Ivalt.ru

И-Вольт
4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Высоковольтный выключатель как выбрать

Устройство и выбор высоковольтных выключателей

Выключатели высокого напряжения

Выключатель — это коммутационный аппарат, предназначенный для включения и отключения тока. Выключатель является основным аппаратом в электрических установках, он служит для отключения и включения цепи в любых режимах: длительная нагрузка, перегрузка, КЗ, холостой ход, несинхронная работа.

К выключателям высокого напряжения предъявляют следующие требования:

-надежное отключение любых токов (от десятков ампер до номинального тока отключения);

-пригодность для быстродействующего автоматического повторного включения (БАПВ);

-возможность по фазного (по полюсного) управления для выключателей 110 кВ и выше;

-легкость ревизии и осмотра контактов;

-взрыво- и пожаробезопасность;

-удобство транспортировки и эксплуатации.

В соответствии с ГОСТ 687 — 78Е выключатели характеризуются следующими параметрами:

1. Номинальный ток отключения Iотк.ном — наибольший ток КЗ (действующее значение), который выключатель способен отключить при напряжении, равном наибольшему рабочему напряжению при заданных условиях восстанавливающегося напряжения и заданном цикле операций. Номинальный ток отключения определяется действующим значением периодической составляющей в момент расхождения контактов.

2. Допустимое относительное содержание апериодической составляющей тока в токе отключения .

3. Цикл операций — выполняемая выключателем последовательность коммутационных операций с заданным интервалом между ними.

4. Стойкость при сквозных токах, характеризующаяся токами термической и электродинамической стойкости (действующее и амплитудное значение); эти токи выключатель выдерживает во включенном положении без повреждений, препятствующих дальнейшей работе.

5. Номинальный ток включения — ток КЗ, который выключатель с соответствующим приводом способен включить без приваривания контактов и других повреждений при номинальном напряжении и заданном цикле.

6. Собственное время отключения — интервал времени от момента подачи команды на отключение до момента прекращения соприкосновения дугогасительных контактов. Время отключения — интервал времени от подачи команды на отключение до момента погасания дуги во всех полюсах. Время включения — интервал времени от подачи команды на включение до возникновения тока в цепи.

7. Параметры восстанавливающегося напряжения — в соответствии с нормированными характеристиками собственного переходного восстанавливающегося напряжения (ПВН).

В ГОСТ 687 — 78Е приведены также другие требования к конструкции выключателей и методы их испытаний.

Основными конструктивными частями выключателей являются: контактная система с дугогасительным устройством, токоведущие части, корпус, изоляционная конструкция и приводной механизм.

Масляные баковые выключатели — в них масло служит для гашения дуги и изоляции токоведущих частей. При напряжение до 10 кВ (некоторые типы до 35 кВ) выключатель имеет один бак, в котором находятся контакты всех трех фаз, при большем напряжении для каждой фазы предусматривается отдельный бак.

Преимущества: простота конструкции; высокая отключающая способность; пригодность для наружной установки; возможность установки встроенных трансформаторов тока.

Недостатки: взрыво- и пожароопасность; необходимость периодического контроля за состоянием и уровнем масла в баке и вводах; большой объем масла, что обусловливает большую затрату времени на его замену, необходимость большых запасов масла; непригодность для установки внутри помещений; непригодность для выполнения быстродействующего АПВ; большая затрата металла, большая масса, неудобство перевозки, монтажа и наладки.

Маломасляные выключатели — масло в этих выключателях в основном служит дугогасящей средой и частично изоляцией между разомкнутыми контактами. Изоляция токоведущих частей друг от друга и от заземленных конструкций осуществляется фарфором или другими твердыми изолирующими материалами.

Достоинства: небольшое количество масла; относительно малая масса; более удобный, чем у баковых выключателей, доступ к дугогасительным контактам; возможность создание серии выключателей на разное напряжение с применением унифицированных узлов.

Недостатки: взрыво- и пожароопасность, хотя и меньшая по сравнению с баковыми; невозможность осуществления БАПВ; необходимость периодического контроля, доливки, относительно частой замены масла в дугогасительных бачках; трудность установки встроенных трансформаторов тока; относительно малая отключающая способность.

Область применения маломасляных выключателей — ЗРУ 6 — 110 кВ, КРУ 6 — 35 кВ, ОРУ 35 — 220 кВ.

Воздушные выключатели — гашение дуги происходит сжатым воздухом или в баке со сжатым воздухом, а изоляция токоведущих частей и дугогасительного устройства осуществляется фарфором или другими твердыми изолирующими материалами.

Преимущества: взрыво- и пожаробезопасность; быстродействие и возможность осуществления БАПВ; высокая отключающая способность; надежное отключение емкостных токов линий; малый износ дугогасительных контактов; легкий доступ к дугогасительным камерам; возможность создания серии из крупных узлов; пригодность для наружной и внутренней установки.

Недостатки: необходимость компрессорной установки; сложная конструкция ряда деталей и узлов; относительно высокая стоимость; трудность установки встроенных трансформаторов тока.

Электромагнитные выключатели — для гашения дуги не требуют ни масла, ни сжатого воздуха, что является большим преимуществом их перед другими типами выключателей. Выпускаются на напряжение 6 — 10 кВ, номинальный ток до 3600 А и ток отключения до 40 кА.

Дуга перемещается в дугогасящую камеру за счет магнитного поля созданного электромагнитом.

Достоинства: полная взрыво- и пожаробезопасность; малый износ дугогасительных контактов; пригодность для работы в условиях частых включении и отключений; относительно высокая отключающая способность.

Недостатки: сложность конструкции дугогасительной камеры с системой магнитного дутья; ограниченный верхний предел номинального напряжения (15 — 20 кВ); ограниченная пригодность для наружной установки.

Вакуумные выключатели — электрическая прочность вакуумного промежутка во много раз больше, чем воздушного при атмосферном давлении, это свойство используется в вакуумных дугогасительных камерах. Эти выключатели имеют ряд отличий: рабочие контакты имеют вид усеченных конусов с радиальными прорезями, создающими радиальное электродинамическое усилие; материал контактов подобран так, чтобы уменьшить количество испаряющегося металла.

Достоинства: простота конструкции; высокая степень надежности; высокая коммутационная износостойкость; малые размеры; пожаро- и взрывобезопасность; отсутствие шума при операциях; отсутствие загрязнения окружающей среды; малые эксплуатационные расходы.

Недостатки: сравнительно небольшие номинальные токи и токи отключения; возможность коммутационных перенапряжений при отключении малых индуктивных токов.

Автогазовые выключатели — для гашения дуги используется газ, выделяющийся из твердого газогенерирующего материала дугогасительной камеры.

Достоинства: отсутствие масла; небольшая масса.

Недостатки: быстрый износ твердого дугогасителя; относительно большой износ контактов.

Элегазовые выключатели — используются высокие дугогасящие свойства элегаза. Для успешного отключения тока в этих выключателях предусмотрено устройство вращения дуги в элегазе. В подвижные и неподвижные контакты встроены постоянные магниты из феррита, которые создают магнитные поля направленные встречно.

Достоинства: пожаро- и взрывобезопасность; быстрота действия; высокая отключающая способность; малый износ дугогасительных контактов; возможность создания серии с унифицированными узлами; пригодность для наружной и внутренней установки.

Недостатки: необходимость специальных устройств для наполнения, очистки и перекачки элегаза, относительно высокая стоимость элегаза.

Синхронизированные выключатели — выключатели, контакты которого размыкаются в строго определенный момент времени с опережением момента перехода отключаемого тока через нуль. Гашение дуги значительно облегчается, так как количество энергии, выделяющейся в дуге, намного уменьшается.

Преимущества: повышение динамической устойчивости работы систем при КЗ, так как отключение обеспечивается до первого перехода тока через нуль; увеличение срока службы контактов выключателя, так как им не приходиться отключать бодьших токов; большую отключающую способность.

Создание синхронизированных выключателей связано со многими техническими трудностями.

studopedia.org — Студопедия.Орг — 2014-2021 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.003 с) .

Объявления

Если вы интересуетесь релейной защитой и реле, то подписывайтесь на мой канал

не могу понять, отличие ВВ от выключателя нагрузки

Советы бывалого релейщика → Спрашивайте — отвечаем → не могу понять, отличие ВВ от выключателя нагрузки

Чтобы отправить ответ, вы должны войти или зарегистрироваться

Сообщений 4

1 Тема от Ivan20 2016-11-10 21:14:21

  • Ivan20
  • Пользователь
  • Неактивен
  • Зарегистрирован: 2015-05-21
  • Сообщений: 103
  • Репутация : [ 0 | 0 ]
Тема: не могу понять, отличие ВВ от выключателя нагрузки

Добрый день! имею в эксплуатации советские ПС 6кв, где есть понятие вводного масленого выключателя (ВМВ), обычный фидерный МВ, выключатель нагрузки ВН, который обычно перед силовым тр-ром и обязательно имеет только ручной привод. Жизнь не стоит на месте — купили парочку новых ПС(Таврида КСО-207, и КТПБ фирмы АББ, КРУЭ с элегазавой изоляцией.) и там и там представители мне заявляют, что ВВ стоят только на вводах, на фидерных это называется выключатель нагрузки(ну еще есть секционный ВВ). Объясните пожалуйста, в чем разница.
ЗЫ. представитель АББ сильно открещивался от того, что якобы нельзя паралелить ПС по 6 кВ, хотя у нас в предприятии это распространенная практика. поэтому на секционнике АББ поставили блокировки, которые не позволяют запараллелиться.

2 Ответ от Lekarь 2016-11-10 22:54:44

  • Lekarь
  • Пользователь
  • Неактивен
  • Зарегистрирован: 2014-12-26
  • Сообщений: 4,749
  • Репутация : [ 9 | 0 ]
Читать еще:  Вбкэ 10 выключатель вакуумный
Re: не могу понять, отличие ВВ от выключателя нагрузки

Добрый день! имею в эксплуатации советские ПС 6кв, где есть понятие вводного масленого выключателя (ВМВ), обычный фидерный МВ, выключатель нагрузки ВН, который обычно перед силовым тр-ром и обязательно имеет только ручной привод. Жизнь не стоит на месте — купили парочку новых ПС(Таврида КСО-207, и КТПБ фирмы АББ, КРУЭ с элегазавой изоляцией.) и там и там представители мне заявляют, что ВВ стоят только на вводах, на фидерных это называется выключатель нагрузки(ну еще есть секционный ВВ). Объясните пожалуйста, в чем разница.
ЗЫ. представитель АББ сильно открещивался от того, что якобы нельзя паралелить ПС по 6 кВ, хотя у нас в предприятии это распространенная практика. поэтому на секционнике АББ поставили блокировки, которые не позволяют запараллелиться.

Силовой выключатель выше 1000 В или как его чаще называют просто выключатель отличается от выключателя нагрузки тем, что может коммутировать — включать и отключать токи короткого замыкания наряду с номинальными токами нагрузки. Выключатель нагрузки, с видимым разрывом не предназначен для отключения токов, превышающих номинальный рабочий ток этого выключателя. Включение на короткие замыкания выключатели нагрузки некоторых типов допускали несколько раз до 5 раз. Но не все.
На сегодня вакуумные выключатели нагрузки мало чем отличаются от силовых вакуумных выключателей по цене. Но вакуумные выключатели нагрузки также не допускают отключение токов КЗ. Включение могут допускать. Отличие вакуумных выключателей нагрузки от силовых может состоять в коммутационном ресурсе номинальных токов. Но это надо смотреть паспорта выключателей.
От ручных приводов постепенно уходить стали. Уж очень опасно оперировать находясь рядом с выключателем.

3 Ответ от matu 2016-11-11 11:13:29

  • matu
  • Пользователь
  • Неактивен
  • Зарегистрирован: 2013-02-21
  • Сообщений: 716
  • Репутация : [ 0 | 0 ]
Re: не могу понять, отличие ВВ от выключателя нагрузки

Как справедливо отмечено в »2″, отличие в способности коммутировать токи к.з. Знаю, что в схемах городских сетей 6 кВ вместе с выключателями нагрузки установлены предохранители для защиты от к.з. А чем теперь фидеры защищены? Не думаю, что защита есть только на вводе.
Насчет параллельной работы секций не ясно: может представители abb имели ввиду недопустимость создания кольца по 6 кВ? Приведите фрагмент схемы, о которой идет речь.

4 Ответ от Ivan20 2016-11-11 16:28:45

  • Ivan20
  • Пользователь
  • Неактивен
  • Зарегистрирован: 2015-05-21
  • Сообщений: 103
  • Репутация : [ 0 | 0 ]
Re: не могу понять, отличие ВВ от выключателя нагрузки

Как справедливо отмечено в »2″, отличие в способности коммутировать токи к.з. Знаю, что в схемах городских сетей 6 кВ вместе с выключателями нагрузки установлены предохранители для защиты от к.з. А чем теперь фидеры защищены? Не думаю, что защита есть только на вводе.
Насчет параллельной работы секций не ясно: может представители abb имели ввиду недопустимость создания кольца по 6 кВ? Приведите фрагмент схемы, о которой идет речь.

Интуитивно я так и предполагал, что разница в способности коммутировать токи КЗ. Поэтому представителям ставил вопрос так: если на «фидерном ВН» (в общем коммутационном аппарате) стоит Сириус 2 л, то должен быть какой-то исполнительный механизм в приводе, который отключает данный ВН, тк у сириуса стандарнтый набор функций — МТО, МТЗ, защита от ОЗЗ. Должен быть какойто аналог катушки отключения. ну то ладно — значит надо первым делом читать паспорта, их нам еще не передали.
По поводу «параллельной работы» типиный поиск земли — есть вышестоящая 110/6, у которой 6 секций РУ-6кв(всего около 100 фидеров, питающие нижестоящие РП, которые в нашем ведении.) например на 1 секции земля — бежим на наши нижестоящие ПС,которые питаются с этой секции — параллелимся через СМВ, далее дежурный дистанционно отключает фидер, если земля исчезла — повезло, если нет включают обратно фидер, и выключают СМВ

Различие выключателей освещения по типу управления и функциям

Классификация высоковольтных выключателей

Все высоковольтные выключатели классифицируются по различным параметрам. В зависимости от способа гашения дуги, они могут быть автогазовыми и автопневматическими, вакуумными, воздушными, а также масляными и электромагнитными.

По своему назначению эти устройства классифицируются следующим образом:

  • Сетевые. Используются в электрических цепях с напряжением 6 кВ и выше. Основной функцией является пропуск и коммутирование тока в обычных условиях или в ненормальной ситуации в течение установленного времени, например, при коротких замыканиях.
  • Генераторные. Предназначены для работы с напряжением 6-20 кВ. Применяются в цепях электродвигателей с высокой мощностью, генераторов и других электрических машин. Пропускают и коммутируют ток не только в обычном рабочем режиме, но и в условиях пуска и коротких замыканий. Отличаются большим значением тока отключения, а номинальный ток может составлять до 10 тыс. ампер.
  • Устройства для электротермических установок. Рассчитаны на значение напряжений от 6 до 220 кВ и применяются в цепях с крупными электротермическими установками. Как правило, это рудотермические, сталеплавильные и другие печи. Могут пропускать и коммутировать ток в различных эксплуатационных режимах.
  • Выключатели нагрузки. Их основное назначение состоит в работе с обычными номинальными токами, они используются в сетях с напряжением от 3 до 10 кВ и осуществляют коммутацию незначительных нагрузок. Данные устройства не рассчитаны на разрыв сверхтоков.
  • Реклоузеры. Подвесные секционные выключатели, управляемые дистанционно. Они снабжены защитой и предназначены для установки на опорах воздушных линий электропередачи.

Высоковольтный выключатель может устанавливаться разными способами. С соответствии с этим они бывают опорными, подвесными, настенными, выкатными. Кроме того, эти приборы могут встраиваться в КРУ – комплектные распределительные устройства.

Выбор силового выключателя 6 кВ

Рассмотрим пример выбора выключателя в сети 6(10) кВ. В нашем случае, нужно выбрать элегазовый выключатель 6 кВ, типа LF (фирмы Schneider Electric), который будет установлен в ячейку КРУ-6 кВ типа Mcset (фирмы Schneider Electric) для питания силового трансформатора типа Minera (фирмы Schneider Electric) мощностью 2500 кВА.

Выбирать выключатель, мы должны из условий: — номинальное напряжение Uуст ≤ Uном;

1. Рассматривая каталожные данные на элегазовые выключатели серии LF и предварительно выбираем выключатель типа LF1 на напряжение 6 кВ, Uуст=6 кВ ≤ Uном=6кВ (условие выполняется);

    номинальный ток Iрасч Iрасч =240,8 А;

3. Проверяем выключатель по отключающей способности.

Согласно ГОСТа 687-78E отключающая способность выключателя представлена тремя показателями:

  • номинальным током отключения Iоткл.;
  • допустимым относительным содержанием апериодической составляющей тока βном;
  • нормированные параметры восстанавливающего напряжения.

3.1 Определяем номинальный ток отключения Iоткл. и βном отнесенные к времени τ — времени отключения выключателя, равно:

τ = tзmin + tc.в = 0,01 + 0,048 = 0,058 (сек)

  • tзmin=0,01 сек. – минимальное время действия релейной защиты (в данном случае, быстродействующей защитой является токовая отсечка (ТО));
  • tc.в – собственное время отключения выключателя (согласно каталожных данных на выключатель LF1 равно 48 мс или 0,048 сек)

3.2 Номинальный ток отключения Iоткл., находим по каталогу: Iоткл.=25 кА.

3.3 Рассчитываем апериодическую состовляющую тока короткого замыкания:

где: Iп.о=7,625 кА – расчетный ток короткого замыкания на шинах 6 кВ. Постоянную времени Та выбираем из таблицы 1, согласно таблицы для распределительных сетей напряжением 6-10 кВ Та=0,01.

Таблица 1 — Значение постоянной времени затухания апериодической составляющей тока короткого замыкания и ударного коэффициента

3.4 Определяем апериодическую составляющую в отключении тока при времени τ=0,058 сек.

где: βном- допустимое относительное содержание апериодической состовляющей, опеределяем по кривой βном=f(τ) приведенном в ГОСТе 687-78E либо можно найти по каталогам.

Рис.1 — Допустимое относительное содержание апериодической составляющей

Если βном ≤ 0,2, то следует принимать равный нулю.

3.5 Определяем тепловой импульс, который выделяется при токе короткого замыкания:

  • tоткл.= tр.з.+ tо.в=0,01+0,07=0,08 сек.
  • tр.з. – время действия основной защиты (токовая отсечка) трансформатора, равное 0,01 сек.
  • tо.в – полное время отключения выключателя LF1 выбирается из каталога, равное 0,07 сек.

3.6 Проверяем на электродинамическую стойкость по условию:

iу=20,553 кА ≤ iпр.с=64 кА (условие выполняется) где: iу=20,553 кА – расчетный ударный ток КЗ; iпр.с= 64 кА – ток динамической стойкости, выбирается из каталога.

3.7 Определим предельный термический ток термической стойкости, исходя из каталога: При этом должно выполнятся условие:

  • Iтер. = 25 кА — предельный ток термической стойкости, выбранный по каталогу;
  • tтер= 3 сек. — длительность протекания тока термической стойкости, согласно каталога.

Все расчетные и каталожные данные, сводим в таблицу 2

№ п/пРасчетные данныеКаталожные данныеУсловие выбораПримечание
Выключатель LF1
1Uуст=6 кВUном=6 кВUуст ≤ Uномусловие выполняется
2Iрасч=240,8 АIном=630 АIрасч Читайте также: Особенности применения операционных усилителей при однополярном питании

Всего наилучшего! До новых встреч на сайте Raschet.info.

Баковые и маломасляные выключатели

Оба устройства представляют собой масляные типы высоковольтных выключателей. Деионизация дуговых промежутков в каждом из них осуществляется одними и теми же методами. Они отличаются друг от друга лишь количеством используемого масла, а также способами, с помощью которых контактная система изолируется от заземленного основания.

Баковые устройства в настоящее время сняты с производства, поскольку у них имелись серьезные недостатки. Уровень масла в баке требовалось постоянно контролировать. Оно использовалось в большом объеме, из-за чего замена масла отнимала много времени. Эти приборы относились к категории взрыво- и пожароопасных и не могли устанавливаться внутри помещений.

На смену им пришли маломасляные или горшковые выключатели, рассчитанные на все виды напряжений. Они могут устанавливаться в любые распределительные устройства, как закрытого, так и открытого типа. Масло в данном случае выступает прежде всего в качестве дугогасящей среды и лишь частично выполняет функции изоляции между разомкнутыми контактами.

Токоведущие части изолируются между собой с помощью фарфора и других твердых изолирующих материалов. Выключатели для внутренней установки оборудованы контактами, помещенными в стальной бачок или горшок. Эта конструктивная особенность дала название всему устройству. В зависимости от модели, приводы высоковольтных выключателей могут различаться между собой.

Приборы, рассчитанные на работу при напряжении 35 кВ, помещаются в фарфоровом корпусе. Наибольшее распространение получили подвесные устройства ВМГ-10 и ВМП-10 на 6-10 кВ. У них крепление корпуса осуществляется с помощью фарфоровых изоляторов к основанию, общему для всех полюсов. В свою очередь, каждый полюс оборудуется одним разрывом контактов и камерой для гашения дуги.

При работе с большими номинальными токами недостаточно одной пары контактов, которые одновременно являются рабочими и дугогасительными. Поэтому снаружи выключателя отдельно устанавливаются рабочие контакты, а внутри металлического бачка – дугогасительные.

Классификация выключателей

Проводя электромонтажные работы с заменой проводки, демонтажом и установкой выключателей, мы имеем дело с десятками разных их видов – от простых одинарных клавишных до многофункциональных выключателей с таймерами и индикационными или сигнальными светодиодами. Классифицировать выключатели можно на основании нескольких признаков:

  • количество кнопок (клавиш, тумблеров) и количество осветительных приборов, которыми можно управлять с помощью выключателя;
  • наличие дополнительных подсвечивающих элементов;
  • функциональные особенности (комплектация таймером, возможность включать осветительный прибор из разных мест в помещении)
  • место расположения (уличные, обладающие высокими показателями защищенности по стандарту IP и домашние, для помещений);
  • наличие/отсутствие сложной электроники (выключатели с электронной «начинкой» называются диммерами – вместе с моделями, в которые встроены датчики движения, они могут быть составной частью системы «умный дом», работая в практически автоматическом режиме);
  • тип работы (кнопочные, поворотные, перекидные).

Выключатели воздушные

Для гашения дуги в выключателях воздушного типа используется сжатый воздух под давлением 2-4 Мпа. Дугогасительное устройство и токоведущие части изолируются с помощью фарфора и других аналогичных материалов. Воздушные выключатели конструктивно различаются между собой в зависимости от таких факторов, как номинальное напряжение, способ подачи сжатого воздуха и других.

Устройства высокого номинального тока, аналогично маломасляным выключателям, оборудованы главным и дугогасительным контурами. При включении основной ток попадает на главные контакты, расположенные открыто. После отключения они размыкаются первыми и далее ток попадает уже на дугогасительные контакты, расположенные в другой камере. Непосредственно перед их размыканием из резервуара в камеру осуществляется подача сжатого воздуха, гасящего дугу, в продольном или поперечном направлении.

В отключенном положении между контактами создается изоляционный зазор необходимых размеров. С этой целью контакты разводятся на достаточное расстояние. Выключатели для внутренней установки рассчитаны на ток до 20 тыс. ампер и напряжение 10-15 кВ. Они имеют отделитель открытого типа, после отключения которого сжатый воздух перестает поступать в камеры и происходит замыкание дугогасительных контактов.

Типовая конструктивная схема воздушного выключателя состоит из дугогасительной камеры, резервуара со сжатым воздухом, главных контактов, шунтирующего резистора, отделителя и емкостного делителя напряжения на 110 кВ, обеспечивающего два разрыва на фазу. В выключателях открытой установки, рассчитанных на напряжение 35 кВ, вполне достаточно одного разрыва на фазу.

Элегазовые высоковольтные выключатели

Элегазом называется смесь серы и фтора в определенной пропорции. В результате образуется инертный газ с плотностью выше чем у воздуха примерно в 5 раз и электрической прочностью в 2-3 раза больше воздушной.

Данный вид выключателей, используя элегаз, способен погасить дугу, ток которой примерно в 100 раз выше тока, отключаемого в обычном воздухе, в тех же самых условиях. Такая способность объясняется возможностями молекул улавливать электроны, находящиеся в дуговом столбе, с одновременным созданием относительно неподвижных отрицательных ионов. При потере электронов дуга становится неустойчивой и очень легко гаснет. Если элегаз подается под давлением, то электроны из дуги поглощаются еще быстрее.

Классификация электрических аппаратов высокого напряжения

Высоковольтными выключателями – называют коммутационные аппараты, производящие оперативное включение или отключение отдельных линий и электрического оборудования при нормальном или аварийном режиме, управляемых вручную, дистанционно или автоматически. Рассмотрим конструктивные особенности данных устройств, выпускаемые разновидности, порядок проверки и технического обслуживания.


Элегазовый колонковый выключатель 110 кВ(слева) и Вакуумный выключатель 10 кВ(справа)

Требования к эксплуатации

При эксплуатации данного оборудования должны соблюдаться следующие требования:

  • правильный выбор элемента с учётом технических характеристик;
  • надлежащее техническое обслуживание, согласно требованиям, предусмотренным заводом-изготовителем;
  • соблюдение условий эксплуатации, допустимых для конкретного устройства;
  • наличие обученного и аттестованного персонала, допускаемого к обслуживанию оборудования.

Установленные устройства должны надлежащим образом проходить регулярные проверки, испытания и другие необходимые виды работ.

Выбор выключателя

Назначение аппарата высоковольтного АВИЦ-120:

Аппараты высоковольтные испытательные АВИЦ-120 и АВИЦ-175 предназначены для воспроизведения и измерения напряжения и силы постоянного тока, напряжения и силы переменного тока промышленной частоты. Модификации АВИЦ-120 и АВИЦ-175 отличаются максимальным выходным напряжение и силой постоянного тока. Предназначены для проведении испытаний и диагностировании изоляции силовых кабелей, ограничителей перенапряжений, твердых диэлектриков, средств защиты и других объектов и материалов, для испытаний которых требуется высокое напряжение.
Аппарат высоковольтный испытательный цифровой АВИЦ-120 поставляется в 3 исполнениях:

  • Исполнение 1 — стальной корпус, вертикальное и горизонтальное рабочее положение;
  • Исполнение 2 — пластиковый корпус, вертикальное и горизонтальное рабочее положение;
  • Исполнение 3 — стальной корпус, исполнение под стойку 19′.

Испытания и проверки, какими приборами ведётся контроль

Эксплуатация высоковольтных выключателей предусматривает проведение следующих проверок:

  • визуального осмотра на предмет наличия внешних дефектов;
  • замеров сопротивления изолирующего покрытия;
  • проверок сопротивления обмоток и контактов, при сравнении полученного значения с нормируемыми показателями;
  • времени срабатывания;
  • температуры контактов и другие.

Инструментальные измерения выполняются мегомметром, термометром и секундомером. Также для проверки устройств могут использоваться специальные стенды, предназначенные для выполнения данных видов работ.

Классификация высоковольтных аппаратов по назначению

Электрический аппарат это электротехническое устройство предназначенное для управления электрическими и не электрическими объектами и защиты их в ненормальных режимах работы.

Классификация высоковольтных эл. аппаратов по назначению:

1) Коммутационные. ( выключатели, отделители, короткозамыкатели, разъединители)

2) Защитные ( предохранители)

3) Ограничивающие ( реакторы, разрядники, ОПН- ограничители перенапряжения нелинейный)

4) Измерительные аппараты (ТТ, ТН)

Выключатель предназначен для коммутации любых режимов: номинальных, токов КЗ, токов х.х. тр-ов, токов холостых линий и кабелей. Характерной особенностью этого аппарата является наличие дугогос. устр. Различают шесть групп выключателей по среде гашения дуги:

1) Маслянные выключатели — дуга, образующаяся между контактами, горит в трансформаторном масле. Под действием энергии дуги масло разлагается и образующиеся газы и пары используются для ее гашения. В зависимости от способа изоляции токоведущих частей различают баковые(35-220 кВ) выключатели и маломасляные(6-220 кВ).

2) Электромагнитные выключатели Гашение дуги происходит за счет увеличения сопротивления дуги вследствие ее ин-тенсивного удлинения и охлаждения. (6-10 кв)

3) В вакуумных выключателях контакты расходятся под вакуумом (давление равно 10-4 Па). Возник-щая при расхождении контактов дуга быстро гаснет благодаря интенсивной диффузии зарядов в вакууме. (10-35 кВ)

4) В воздушном выключателе в качестве гасящей среды исполь-ся сжатый воздух, находящийся в баке под давлением 1-5 МПа; при отключении сжатый воздух из бака подается в дугогасительное устройство. (110-1150 кВ)

5) В элегазовых выключателях гашение дуги осуществляется за счет охлаждения ее двигающимся с большой скоростью элегазом (шестифтористой серой SF6), который используется и как изолирующая среда.

6) Выключатели нагрузки ДУ этих выключателей рассчитаны только не гашение маломощной дуги, возникающей при отключении нагрузки, поэтому их нельзя использовать для отключения цепей при коротких замыканиях. Для этого с ним последовательно ставится предохранитель. (6-10 кВ)

Разъединители, отделители, короткозамыкатели – это коммут аппараты у которых нет ДУ.

Разъединитель служит для включения и откл. цепи ВН либо при токах, знчительно меньших номинальных, либо в случаях, когда отключается номинальный то, но напряжение на контактах недостаточно для образования дуги. (ручной привод)

Короткозамыкатель- это быстродействующий контактный аппарат, с помощью которого по сигналу РЗ созд-ся КЗ сети. Отделитель предст собой разъединитель, который быстро откл обесточенную цепь после подачи команды на его привод. Токоограничивающий реактор- катушка индуктивности, которая служит для ограничения тока КЗ и поддержания необходимого напряжения на сборных шинах. Реакторы позволяют применить высоковольтные выключатели и другие АВН облегченного типа, а также повысить надежность работы эл.уст-ки

Реакторы. Различают: бетонные, масляные, сдвоенные.

Разрядники, ОПН- ограничивают напряжение в эл уст-ке при коммутационных и атмосферных перенапряжениях. Разряднки: трубчатый, вентильный ОПН- усовершенствованный вентильный разрядник.ТТ, ТН- они изолируют цепи высокого напряжения от токовых цепей и цепей напряжения измерительных приборов и РЗ. ТТ- Измерительным трансформатором тока называют трансформатор, предназн-аченный для преобразования тока до значения, удобного для измерения. Вторичные токи 1, 5А

По конструкции: одновитковые( для преобраз больших токов); многовитковые ( исп-ся на малые токи); каскадные. По изоляции: масляные, литые, сухие. Новый элегазовый- ТГФ в фарфоровом корпусе > 220 кВ. ТН- предназначены для преобраз напряжения до 100, В. TН: однофазные, трехфазные, каскадные

По изоляции: масляные, литой, сухой.

Марки НАМИ-6(10),35 кВ-тр-р напряжения антирезонансный, маслян изоляц дополнит обмотка защиты изоляции

Техническое обслуживание выключателей

Выключатели должны регулярно осматриваться для определения наличия повреждений, которые можно выявить по внешнему виду устройства. При остановках оборудования в рамках технического обслуживания должна проводиться его очистка, настройка, удаление нагара с контактов, другие необходимые операции, предусмотренные технической документацией изготовителя.

Каждые 4 года устройства подвергаются регламентированному текущему, а 8 лет – капитальному ремонту. Необходимость проведения текущего ремонта может быть обусловлена:

  • нарушением целостности элементов;
  • шумом и треском в ходе срабатывания выключателя;
  • перегревом контактов;
  • повышенным расходом масла.

Работы обычно выполняются по месту эксплуатации устройств, к их выполнению привлекается обученный персонал в составе специализированной организации.

Высоковольтные выключатели – важные устройства, от исправности которых зависит правильность выполнения коммутационных операций.

Более подробно можете прочитать в учебнике(начиная со страницы 237, а про выбор выключателя со страницы 268):Открыть и читать книгу

Особенности аппарата высоковольтного АВИЦ-120:

  • Разработка и производство России;
  • Графический экран — промышленный, рабочая температура -30…+50 гр. Цельсия;
  • Провод межблочный — гибкий при отрицательных температурах;
  • Провод питания — производства России;
  • Режим проверки трансформаторного масла с фиксацией значений U;
  • Запуск таймера с любого напряжения;
  • Режим стабилизации тока — ПРОЖИГ;
  • Режим работы с ванной испытательной АВИЦ-20П;
  • Режим источника напряжения 0…230 В и тока 0…12 А;
  • Режим источника больших токов 0…36 В и тока 0…100 А;
  • Встроенный интерфейс USB и ПО с фотографией результата;
  • Встроенное разрядное устройство;
  • Встроенный диодный столб;
  • Графическое и цифровое отображение напряжения и тока;
  • Отсутствие коронации, гула, дребезга;
  • Влагопылезащитное исполнение блоков IP54 и IP60;
  • Защита экрана — поликарбонат с защитным покрытием;
  • Легкий и компактный;
  • Установка тока отключения от 1 до 39 мА с шагом 1 мА;
  • Установка тока ограничения от 1 мА до 35 мА с шагом 1 мА;
  • Фиксация значений U и I при пробое в нагрузке;
  • Оптимизирован для проверки трансформаторного масла;
  • Автоматический и ручной режим работы, таймер;
  • Температурная защита высоковольтного блока 50 град;
  • Необслуживаемый высоковольтный блок.

Аппараты высокого напряжения

Рассмотрены принципы действия, устройство, расчет и проектирование аппаратов высокого напряжения. Приведены основные параметры современных аппаратов высокого напряжения и их выбор. По основным аппаратам — выключателям, трансформаторам тока, трансформаторам напряжения и реакторам — даны примеры расчета и проектирования, позволяющие студентам выполнить курсовой проект. Для студентов вузов. Может быть полезно для инженерно-технических работников, проектирующих аппараты высокого напряжения или занимающихся их эксплуатацией.

Оглавление Предисловие Введение В.1. Классификация АВН В.2. Расположение АВН в электроустановках В.З. Род установки АВН В.4. Основные параметры АВН В.5. Требования, предъявляемые к АВН Глава первая. Изоляция аппаратов высокого напряжения 1.1 Классы номинальных напряжений и испытательные напряжения АВН. Координация внутренней и внешней изоляции 1.2 Расчету выбор изоляционных расстояний в воздухе 1.3 Расчет изоляционных расстояний в элегазе 1.4 Расчет и выбор изоляционных расстояний в масле 1.5 Расчет бумажно-масляной и конденсаторной изоляции 1.6 Особенности технологического процесса изготовления твердых изоляционных материалов, применяемых в АВН. Литая изоляция 1.7 Фарфоровые элементы АВН. Выбор этих элементов исходя из требований электрической изоляции и механической прочности Глава вторая. Выключатели переменного тока высокого напряжения. Общие сведения 2.1 Номинальный ток отключения 2.2 Циклы операций 2.3 Требования по восстанавливающемуся напряжению 2.4 Стойкость выключателей при сквозных токах КЗ 2.5 Время действия выключателя 2.6 Надежность 2.7 Краткие сведения по испытанию выключателей Глава третья. Воздушные и элегазовые выключатели 3.1 Общая компоновка воздушных выключателей 3.2 Электрическая дуга в продольном потоке сжатого воздуха 3.3 Термодинамическая закупорка сопла. Расчет его сечения по заданному току отключения 3.4 Восстановление электрической прочности междуконтактного промежутка в ДУ продольного дутья 3.5 Облегчение работы ДУ воздушного выключателя с помощью шунтирующих резисторов и конденсаторов 3.6 Элементы газовой динамики воздушных выключателей 3.7 Расчет и выбор основных параметров ДУ воздушного выключателя 3.8 Элементы системы управления воздушными выключателями 3.9 Конструкция воздушных выключателей 3.10 Свойства элегаза 3.11 Элементы расчета ДУ элегазового выключателя 3.12 Конструкция элегазовых выключателей 3.13 Перспективы развития воздушных и элегазовых выключателей 3.14 Пример расчета ДУ воздушного выключателя Глава четвертая. Масляные выключатели 4.1 Общая компоновка бакового и маломасляного выключателей 4.2 Конструкция и принцип действия ДУ 4.3 Расчет давления в ДУ автогазового дутья 4.4 Работа ДУ в режиме АПВ и при частых включениях и отключениях 4.5 Механизмы выключателя 4.6 Приводы выключателей 4.7 Порядок проектирований выключателя Глава пятая. Электромагнитные выключатели 5.1 Общие сведения 5.2 Вольтамперная характеристика дуги, охлаждаемой в щелевом канале 5.3 Отключение переменного тока сильно индуктивной цепи ДУ с узкой щелью 5.4 Нагрев стенок щели ДУ 5.5 Скорость движения дуги в ДУ электромагнитного выключателя 5.6 Остаточная проводимость ДУ электромагнитного выключателя 5.7 Конструкция ДУ электромагнитных выключателей 5.8 Порядок расчета ДУ электромагнитного выключателя Глава шестая. Вакуумные выключатели6.1 Общие сведения 6.2 Развитие вакуумного ДУ по номинальному току и номинальному току отключения 6.3 Электродинамическая и термическая стойкость ДУ вакуумного выключателя. Эрозия контактов 6.4 Электрическая прочность вакуумных ДУ 6.5 Конструкции вакуумных ДУ и вакуумных выключателей 6.6 Заключение Глава седьмая. Разъединители, отделители и короткозамыкатели. Выключатели нагрузки 7.1 Требования, предъявляемые к разъединителям, отделителям и короткозамыкателям 7.2 Конструкции разъединителей 7.3 Конструкции отделителей и короткозамыкателей 7.4 Выключатели нагрузки Глава восьмая. Предохранители высокого напряжения 8.1 Требования, предъявляемые к предохранителям 8.2 Конструкция предохранителей 8.3 Расчет и выбор основных параметров предохранителей Глава девятая. Предохранители высокого напряжения 9.1 Общие сведения 9.2 Компенсация погрешности 9.3 Режимы работы трансформаторов тока 9.4 Конструкция трансформаторов тока 9.5 Воздушные трансформаторы тока 9.6 Оптико-электронные трансформаторы тока (ОЭТТ) 9.7 Трансформаторы постоянного тока (ТПТ) 9.8 Выбор трансформаторов тока 9.9 Пример расчета электромагнитного трансформатора тока Глава десятая. Трансформаторы напряжения10.1 Общие сведения 10.2 Векторная диаграмма и погрешность 10.3 Компенсация погрешности 10.4 Конструкция ТН 10.5 Элементы электромагнитных ТН 10.6 Конденсаторные ТН 10.7 Трансформаторы постоянного напряжения (ТПН) 10.8 Оптико-электронные трансформаторы напряжения (ОЭТН) 10.9 Пример расчета ТН Глава одиннадцатая. Реакторы 11.1 Общие сведения 11.2 Конструкция реакторов 11.3 Расчет индуктивности реактора 11.4 Тепловой расчет реактора 11.5 Электродинамическая стойкость реактора 11.6 Изоляция реактора 11.7 Выводы реактора 11.8 Сдвоенные реакторы 11.9 Пример расчета реактора Глава двенадцатая. Разрядники 12.1 Назначение разрядников и требования к ним 12.2 Трубчатые разрядники 12.3 Вентильные разрядники 12.4 Ограничители перенапряжений Глава тринадцатая. Комплектные устройства высокого напряжения 13.1 Общие сведения 13.2 Комплектные распределительные устройства напряжением 10 кВ 13.3 Комплектные распределительные устройства с элегазом (КРУЭ) 13.4 Конструктивное исполнение некоторых элементов КРУЭ Список литературы

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector