Ivalt.ru

И-Вольт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Выключатель высокого напряжения трансформатора

Выбор высоковольтных выключателей: по типам, мощности, расчет, формулы, примеры

Классификация высоковольтных выключателей

Все высоковольтные выключатели классифицируются по различным параметрам. В зависимости от способа гашения дуги, они могут быть автогазовыми и автопневматическими, вакуумными, воздушными, а также масляными и электромагнитными.

По своему назначению эти устройства классифицируются следующим образом:

  • Сетевые. Используются в электрических цепях с напряжением 6 кВ и выше. Основной функцией является пропуск и коммутирование тока в обычных условиях или в ненормальной ситуации в течение установленного времени, например, при коротких замыканиях.
  • Генераторные. Предназначены для работы с напряжением 6-20 кВ. Применяются в цепях электродвигателей с высокой мощностью, генераторов и других электрических машин. Пропускают и коммутируют ток не только в обычном рабочем режиме, но и в условиях пуска и коротких замыканий. Отличаются большим значением тока отключения, а номинальный ток может составлять до 10 тыс. ампер.
  • Устройства для электротермических установок. Рассчитаны на значение напряжений от 6 до 220 кВ и применяются в цепях с крупными электротермическими установками. Как правило, это рудотермические, сталеплавильные и другие печи. Могут пропускать и коммутировать ток в различных эксплуатационных режимах.
  • Выключатели нагрузки. Их основное назначение состоит в работе с обычными номинальными токами, они используются в сетях с напряжением от 3 до 10 кВ и осуществляют коммутацию незначительных нагрузок. Данные устройства не рассчитаны на разрыв сверхтоков.
  • Реклоузеры. Подвесные секционные выключатели, управляемые дистанционно. Они снабжены защитой и предназначены для установки на опорах воздушных линий электропередачи.

Высоковольтный выключатель может устанавливаться разными способами. С соответствии с этим они бывают опорными, подвесными, настенными, выкатными. Кроме того, эти приборы могут встраиваться в КРУ – комплектные распределительные устройства.

Установка выключателей на стену

Как мы уже отметили выше, выключатели могут устанавливаться как для открытой проводки, так и для скрытой. Первый способ требует применения накладных выключателей, а про втором варианте применяются выключатели, установленные в монтажные коробки. Для этого способа крепления в стене делается углубление, где устанавливается сама коробка, а в нее помещается выключатель. Более современный метод крепления выключателя в коробке реализуется при помощи лепестков и кавычек, иногда из крепежных пластин.

Баковые и маломасляные выключатели

Оба устройства представляют собой масляные типы высоковольтных выключателей. Деионизация дуговых промежутков в каждом из них осуществляется одними и теми же методами. Они отличаются друг от друга лишь количеством используемого масла, а также способами, с помощью которых контактная система изолируется от заземленного основания.

Баковые устройства в настоящее время сняты с производства, поскольку у них имелись серьезные недостатки. Уровень масла в баке требовалось постоянно контролировать. Оно использовалось в большом объеме, из-за чего замена масла отнимала много времени. Эти приборы относились к категории взрыво- и пожароопасных и не могли устанавливаться внутри помещений.

На смену им пришли маломасляные или горшковые выключатели, рассчитанные на все виды напряжений. Они могут устанавливаться в любые распределительные устройства, как закрытого, так и открытого типа. Масло в данном случае выступает прежде всего в качестве дугогасящей среды и лишь частично выполняет функции изоляции между разомкнутыми контактами.

Токоведущие части изолируются между собой с помощью фарфора и других твердых изолирующих материалов. Выключатели для внутренней установки оборудованы контактами, помещенными в стальной бачок или горшок. Эта конструктивная особенность дала название всему устройству. В зависимости от модели, приводы высоковольтных выключателей могут различаться между собой.

Приборы, рассчитанные на работу при напряжении 35 кВ, помещаются в фарфоровом корпусе. Наибольшее распространение получили подвесные устройства ВМГ-10 и ВМП-10 на 6-10 кВ. У них крепление корпуса осуществляется с помощью фарфоровых изоляторов к основанию, общему для всех полюсов. В свою очередь, каждый полюс оборудуется одним разрывом контактов и камерой для гашения дуги.

При работе с большими номинальными токами недостаточно одной пары контактов, которые одновременно являются рабочими и дугогасительными. Поэтому снаружи выключателя отдельно устанавливаются рабочие контакты, а внутри металлического бачка – дугогасительные.

Дополнительные функции

Сегодня принято выпускать выключатели со специальным индикатором включения или же подсветкой, которые работают по определенным схемам. Например, индикатор включения показывает подачу электричества, и скорее подходит для применения в закрытых помещений. Он позволяет с легкостью определить без отрывания двери, горит ли свет. Выключатели с подсветкой, в свою очередь, помогают в темноте найти сам выключатель. Светолеруторы с особыми функциями, кроме включения света, позволяют отрегулировать его яркость.

Выключатели воздушные

Для гашения дуги в выключателях воздушного типа используется сжатый воздух под давлением 2-4 Мпа. Дугогасительное устройство и токоведущие части изолируются с помощью фарфора и других аналогичных материалов. Воздушные выключатели конструктивно различаются между собой в зависимости от таких факторов, как номинальное напряжение, способ подачи сжатого воздуха и других.

Устройства высокого номинального тока, аналогично маломасляным выключателям, оборудованы главным и дугогасительным контурами. При включении основной ток попадает на главные контакты, расположенные открыто. После отключения они размыкаются первыми и далее ток попадает уже на дугогасительные контакты, расположенные в другой камере. Непосредственно перед их размыканием из резервуара в камеру осуществляется подача сжатого воздуха, гасящего дугу, в продольном или поперечном направлении.

В отключенном положении между контактами создается изоляционный зазор необходимых размеров. С этой целью контакты разводятся на достаточное расстояние. Выключатели для внутренней установки рассчитаны на ток до 20 тыс. ампер и напряжение 10-15 кВ. Они имеют отделитель открытого типа, после отключения которого сжатый воздух перестает поступать в камеры и происходит замыкание дугогасительных контактов.

Типовая конструктивная схема воздушного выключателя состоит из дугогасительной камеры, резервуара со сжатым воздухом, главных контактов, шунтирующего резистора, отделителя и емкостного делителя напряжения на 110 кВ, обеспечивающего два разрыва на фазу. В выключателях открытой установки, рассчитанных на напряжение 35 кВ, вполне достаточно одного разрыва на фазу.

Выключатели нагрузки типа ВНР. Особенности конструкций и принцип действия.

Кроме выключателей нагрузки типа ВН, в странах СНГ также широко эксплуатируется выключатель нагрузки типа ВНР-10/400-10з.

Конструкция выключателя нагрузки типа ВНР-10/400-10з

На сварной раме 1 установлены шесть опорных изоляторов 2, при этом на нижних изоляторах закреплены контакты 3 с держателями основных ножей 4, на верхних же изоляторах – главные 6 и дугогасительные контакты, которые закрыты дугогасительными устройствами. С помощью рычага 8 и изоляционной тяги 7 передается движение от вала выключателя к ножам. Для обеспечения необходимой скорости отключения на выключателе смонтированы специальные пружины 13 и амортизирующие резиновые шайбы 14. Стационарные заземляющие ножи 10 соединяются с рамой выключателя гибкими связями 9 и приводятся в движение с помощью вала 11 заземляющего устройства.

Для включения выключателя нагрузки рукоятку рычага привода перемещают снизу вверх, при этом вал 15 поворачивается и с помощью изоляционных тяг включает контактные ножи. Для осуществления отключения выключателя рукоятку рычага привода перемещают сверху вниз или дистанционно от кнопки с замыкающими контактами, при этом вал поворачивается под действием отключающих пружин и отключает выключатель.

Выключатель нагрузки типа ВНР-10/400-10з а) общий вид выключателя нагрузки; б) разрез дугогасительной камеры; в, г) компоновка выключателя 1 — дугогасительная камера: 2, 9 — неподвижный и подвижный рабочие контакты; 3, 5 — рычаги вала выключателя нагрузки и заземляющих ножей; 4 — пружина; 6 — вал заземляющих ножей; 7 — заземляющие ножи; 8 — гибкая связь; 10, 12 — неподвижный и подвижный дугогасительные контакты; 11 — вкладыш из органического стекла; 13, 17 — тяги приводов выключателя нагрузки и заземляющих ножей; 14, 16 — приводы выключателя нагрузки и заземляющих ножей: 15 — предохранители ПКТ; 18 — полурама; 19 — рама

Элегазовые высоковольтные выключатели

Элегазом называется смесь серы и фтора в определенной пропорции. В результате образуется инертный газ с плотностью выше чем у воздуха примерно в 5 раз и электрической прочностью в 2-3 раза больше воздушной.

Данный вид выключателей, используя элегаз, способен погасить дугу, ток которой примерно в 100 раз выше тока, отключаемого в обычном воздухе, в тех же самых условиях. Такая способность объясняется возможностями молекул улавливать электроны, находящиеся в дуговом столбе, с одновременным созданием относительно неподвижных отрицательных ионов. При потере электронов дуга становится неустойчивой и очень легко гаснет. Если элегаз подается под давлением, то электроны из дуги поглощаются еще быстрее.

Виды включателей по количеству клавиш

Самые простые – одноклавишные, которые могут управлять одним или несколькими осветительными приборами. Пример: классический выключатель для небольшой – на три-четыре лампы – люстры. Более распространенные модели – двухклавишные. Они предназначены для мощных осветительных бытовых приборов с четырьмя-пятью и более лампами.

Если комната нуждается в установке нескольких люстр или торшеров, бра или светильников, то имеет смысл купить выключатели с большим количеством клавиш. Хотя они и редки, найти их можно – зато потом освещением в комнате будет удобно управлять.

С количеством клавиш на выключателе тесно связан и способ работы этого устройства. Классические перекидные (клавишные) могут выпускаться с большим количеством клавиш. А вот поворотные, в силу конструктивных особенностей, в основном изготавливаются одноклавишными – то есть способны управлять одним источником света. Они же используются для управления электроприборами, оснащаясь таймерами включения/выключения.

Читать еще:  Проверка электрических контактов выключателя замка распашных дверей

Веревочные

Принцип работы этого выключателя аналогичен кнопочному: потянув за веревочку до щелчка, вы замыкаете контакты. Тянете во второй раз и размыкаете. Этот тип выключателя в основном применяется в настенных бра и иногда для включения вытяжных вентиляторов.

Веревочные выключатели используют не только в декоративных целях, у них есть ряд практических преимуществ. Например, свисающий шнур легко найти на ощупь в темноте, а еще такие выключатели подойдут семьям с маленькими детьми, ребенок с легкостью до него дотянется и сможет самостоятельно включить и выключить свет.

Дистанционные

Это выключатели, которые срабатывают от сигнала пульта дистанционного управления. Встречаются и комбинированные модели: например, сенсорный выключатель с пультом ДУ. Дистанционные выключатели не очень распространены, потому что стоят довольно дорого. К тому же пульты имеют свойство теряться.

Но есть и свои плюсы. Во-первых, с дистанционными выключателями вам не придется портить стены: достаточно будет просто вооружиться саморезами или двухсторонним скотчем и закрепить выключатели в нужных местах. И никаких проблем со стационарной проводкой. Во-вторых, вы сможете включать и выключать лампочки из любой точки квартиры или дома и почувствовать себя повелителем света.

Акустические

Такие выключатели еще называют хлопковыми или звуковыми. Включение происходит от подачи звукового сигнала определенной громкости, например, хлопка в ладоши. Выключатели такого типа с таймером устанавливаются не только в квартирах, но и на лестничных площадках. В некоторых моделях предусмотрена настройка времени, спустя которое выключатель разъединяет цепь. Зачастую акустические выключатели прячутся в распределительных коробках и дублируются обычными клавишными.

Главный плюс этой модели очевиден: с ней вам не придется искать выключатель в темноте наощупь или идти через всю квартиру в грязной обуви, потому что вы забыли выключить свет. Однако такие устройства не всегда реагируют с первого раза и могут срабатывать самопроизвольно, чем иногда вызывают раздражение владельцев.

Защита и электроавтоматика силовых трансформаторов и автотрансформаторов (ат)

Все защиты трансформатора можно разделить на две группы: основные и резервные защиты.

Основные защищают трансформатор от внутренних повреждений и ненормальных режимов в самом трансформаторе или на его ошинов­ках.

Резервные защищают обмотки трансформатора от сверхтоков внешних к.з. при повреждениях на присоединениях прилегающей се­ти, а также по возможности резервируют основные защиты трансфор­матора.

Основными защитами трансформатора и АТ являются: диф­ференциальная токовая защита трансформатора, газовая защита трансформатора, газовая защита РПН, токовая отсечка,устанавлива­емая со стороны питания на трансформаторах малой мощности, диф­ференциальная токовая защита ошиновки низшего напряжения АТ, дифференциальная токовая защита ошиновки высшего и среднего нап­ряжения АТ.

Газовая защита трансформатора содержит два элемента: сигнальный и отключающий.

Сигнальный действует на сигнал при слабом газообразовании и при понижении уровня масла.

Отключающий действует на отключение трансформатора со всех сторон с запретом АПВ трансформатора при интенсивном газообразо­вании и движении масла со скоростью 0,6-1,5 м/сек по маслопрово­ду между баком трансформатора и расширителем, а также при даль­нейшем (после срабатывания сигнального элемента) понижении уров­ня масла.

Для защиты от повреждений контакторов РПН применяет­ся газовая защита РПН.

Защита выполняется с помощью струйного реле, устанавливае­мого между баком РПН и расширителем.

Газовая защита РПН действует на отключение трансформатора со всех сторон с запретом АПВ трансформатора.

Сигнальный элемент у струйных реле отсутствует.

Дифференциальная защита трансформатора реагирует на все виды к.з. (за исключением однофазных замыканий на землю в обмотке 6-10-35кВ) в зоне, ограниченной трансформаторами тока (ТТ).

При замене выключателя трансформатора обходным выключателем дифференциальная защита переключается с ТТ заменяемого выключа­теля на ТТ обходного выключателя.

Защита действует на отключение трансформатора со всех сто­рон с запретом АПВ.

Дифференциальная защита ошиновки высшего (среднего) напряжения АТ.

Защита охватывает зону между встроенными ТТ АТ и выносными ТТ выключателей, действует без выдержки времени на отключение АТ со всех сторон без запрета АПВ АТ.

Дифференциальная защита цепей низшего напряжения АТ.

В зону действия этой защиты входят линейный трансформатор, реактор и ошиновка цепей низшего напряжения от встроенных ТТ АТ до выносных ТТ в ячейке ввода низшего напряжения.Защита действу­ет на отключение АТ со всех сторон с запретом АПВ.

В качестве резервной защиты трансформаторов тупиковых и отпаечных подстанций используется максимальная токовая защита (МТЗ) с пуском напряжения или без пуска напряжения.

МТЗ устанавливается на каждой стороне трансформатора. Со стороны питания (110кВ,220кВ) МТЗ, как правило, действует с дву­мя выдержками времени.

С меньшей выдержкой времени на отключение ввода 10кВ, а с большей – на отключение трансформатора со всех сторон.

В случае, когда с высокой стороны трансформатора установле­ны короткозамыкатель и отделитель, основные защиты без выдержки времени, а резервные защиты с наибольшей выдержкой времени дейс-

твуют на включение короткозамыкателя, тем самым создавая искусс­твенное однофазное короткое замыкание, отключаемое защитой пита­ющих линий. В бестоковую паузу (при АПВ питающих линий) произво­дится автоматическое отключение отделителя, после чего повреж­денный трансформатор (автотрансформатор) оказывается полностью отключенным.

Передача команды – импульса на отключение выключателя с пи­тающей стороны линии при повреждении в трансформаторе, не имею­щем выключателя с высокой стороны, может выполняться и без вклю­чения короткозамыкателя (для создания искусственного короткого замыкания).Такая команда может подаваться с помощью телеотключе­ния по высокочастотному каналу.

С целью ближнего резервирования защит трансформатора пре­дусматривается резервная независимая МТЗ-110кВ.

Эта защита является полностью автономной как по цепям то­ка,оперативным цепям, так и по выходным цепям.

Резервная МТЗ-110 с выдержкой времени большей времени сра­батывания основной МТЗ-110 действует на отдельную катушку вклю­чения короткозамыкателя или на отдельную катушку отключения вык­лючателя на стороне 110кВ.

С выдержкой времени большей времени действия защит на вклю­чение короткозамыкателя УРОКЗ действует на отключение отделителя.

При этом допускается разрешение отделителя во имя спасения самого трансформатора.

На отпаечных трансформаторах и тупиковых подстанциях 110кВ могут применяться и одноступенчатые токовые защиты нулевой пос­ледовательности, действующие на отключение трансформатора.

На автотрансформаторах транзитных подстанций с высшим напряжением 220-750кВ в качестве резервных защит используются дистанционные защиты (ДЗ) и направленные токовые защиты нулевой последовательности (НТЗНП).

Дистанционные защиты предназначены для отключения междуфаз­ных к.з., а НТЗНП – для отключения одно- и двухфазных к.з. на землю.

Как правило, на высшей и средней стороне АТ устанавливаются двухступенчатая ДЗ и 3-х ступенчатая НТЗНП.

Оперативное ускорение (О/У) первых или вторых ступеней ДЗ и НТЗНП стороны высшего или среднего напряжения АТ ( время 0,3-0,6 сек) вводится оперативным персоналом в случае вывода из работы дифференциальной защиты трансформатора, дифзащиты ошиновки выс­шего напряжения АТ, дифзащиты шин среднего напряжения.

Цель О/У резервных защит АТ – ускорить действие резервных защит АТ при близких внешних к.з. или к.з. в самом АТ.

Следует отметить, что на время ввода О/У резервных защит, возможно их неселективное действие при к.з. в прилегающей сети.

Резервные защиты АТ стороны высшего напряжения действуют с первой (меньшей) выдержкой времени на отключение всех выключате­лей высшего напряжения, а со второй (большей) – на отключение АТ со всех сторон.

На ПС, имеющих на стороне 330кВ схему первичных соединений “полуторная”, резервные защиты стороны 330кВ АТ действуют с первой (меньшей) выдержкой времени на деление шин 330кВ (отключение всех выключателей В12), со вто­рой – на отключение выключателей 330кВ своего АТ, и с третьей (наибольшей) – на отключение своего АТ со всех сторон.

Резервные защиты стороны среднего напряжения АТ при схеме первичных соединений этой стороны “секционированная С.Ш.” дейс­твуют с первой выдержкой времени на отключение ШСВ, со второй – на отключение своей стороны и с третьей – на отключение АТ со всех сторон.

Такое ступенчатое действие резервных защит позволяет сохра­нить в работе те АТ, которые отделяются от места к.з. после де­ления систем шин.

Автоматическое ускорение (А/У) резервных защит при включении выключателя стороны высшего напряжения (А/У – 750,

А/У-330) и при включении выключателей стороны среднего напряже­ния ( А/У-220, А/У-110) действует на отключение выключателя, включаемого на к.з. ключом управления или устройством ТАПВ.

При этом на каждой стороне АТ ускоряются до 0,4-0,5 сек I и II ступени ДЗ и II ненаправленная ТЗНП.

Индивидуальная защита от непереключения фаз выключате­лей стороны среднего и высшего напряжения АТ.

Защита выполняется только на выключателях с пофазным управ­лением.

Назначение защиты – ликвидация неполнофазного режима, воз­никающего при включении выключателя одной или двумя фазами.

Защита действует на отключение трех фаз включаемого выклю­чателя.

Выдержка времени защиты (0,15 ¶ 0,25 сек) выбрана по усло­вию отстройки от разновременности включения фаз выключателя.

Защита от неполнофазного режима на стороне 330 кВ (750) АТ (ЗНР-330).

Назначение защиты – ликвидация неполнофазного режима, воз­никающего при неполнофазном отключении одного выключателя 330 кВ АТ и трехфазном отключении второго выключателя 330 кВ АТ.

Защита, как правило, действует на отключение АТ со всех сторон.

Выдержка времени ЗНР-330 на 0,3 сек выше выдержки времени индивидуальной защиты от непереключения фаз выключателя.

Читать еще:  Выключатель терра цвет дуб

На АТ-750кВ для контроля состояния изо­ляции вводов 750кВ АТ применяется устройство КИВ-750.

Принцип действия устройства – измерение геометрической сум­мы токов, протекающих под воздействием рабочего напряжения через изоляцию вводов 750 кВ трех фаз.

При исправной изоляции геометрическая сумма токов, входящих в реле типа КИВ, близка к нулю. В случае частичного повреждения изоляции ввода одной из фаз появляется ток небаланса, который фиксируется защитой.

Устройство типа КИВ имеет измерительный элемент для опера­тивного контроля и отключающий элемент.

Отключающий элемент действует на отключение АТ со всех сто­рон.

Защита от перегрузки.

В качестве такой защиты устанавливается токовая защита, действующая с выдержкой времени на сигнал в случае перегрузки по току любой обмотки трансформатора.

Высоковольтное оборудование
«Декларирование высоковольтных выключателей (силовые выключатели)»

Выключатель высоковольтный — аппарат, использующийся для быстрого включения и отключения отдельных цепей или электрооборудования в энергосистеме при дистанционном, автоматическом или ручном управлении в нормальных или аварийных режимах.

Состоит из:

  • корпуса;
  • контактной системы;
  • изоляционной конструкции;
  • токоведущих частей;
  • приводного механизма.

Декларация на высоковольтные выключатели (силовые выключатели)

В соответствии с Постановлением Правительства РФ от 01.12.2009 г. N 982 аппаратура электрическая высоковольтная подлежит обязательному подтверждению соответствия в виде декларации, оформленной в Российской (национальной) системе ГОСТ Р.

Схемы декларирования:

  • 2Д — на основании результатов испытаний образцов с привлечением третьей стороны и собственных доказательств;
  • 3Д — на основании сертификата системы качества на стадии производства и результатов испытаний образцов;
  • 4Д — на основании сертификата системы качества на стадии контроля и испытаний и результатов испытаний образцов с привлечением третьей стороны;
  • 5Д (для партии продукции) — на основании результатов испытаний выбранных образцов из партии;
  • 7Д — на основании сертификата системы качества на стадии проектирования и производства и результатов собственных испытаний образцов или испытаний, проведенных с привлечением других организаций.

Декларация оформляется на предприятие, зарегистрированное в России. Максимальный срок действия декларации 3 года. Основание, позволяющие зарегистрировать декларацию, является подтверждение выключателей, установленным ГОСТам в виде собственных протоколов испытаний или полученных в аккредитованной лаборатории. Декларация выдается на бумаге А4, а также регистрируется в гос. реестре.

Классификация выключателей по кодам ОКП и ТН ВЭД

Код в ОКП:

  • 341410 — Выключатели, контакторы и реверсоры переменного тока / высокого напряжения (выключатели силовые высоковольтные).

Код в ТН ВЭД:

  • 8535 29 000 0 — прочие (из группы 8535).

Применяемые стандарты для высоковольтных выключателей (силовых)

  • ГОСТ Р 52565-2006 Выключатели переменного тока на напряжения от 3 до 750 кВ. Общие технические условия;
  • ГОСТ 1516.3-96 Электрооборудование переменного тока на напряжения от 1 до 750 кВ. Требования к электрической прочности изоляции;
  • ГОСТ 2585-81 Выключатели автоматические быстродействующие постоянного тока. Общие технические условия;
  • ГОСТ 17717-79 Выключатели нагрузки переменного тока на напряжение от 3 до 10 кВ. Общие технические условия;
  • ГОСТ 18397-86 Выключатели переменного тока на номинальное напряжение 6-220 кВ для частых коммутационных операций. Общие технические условия

Пожарный сертификат на выключатели силовые

В соответствии с Федеральным Законом 123 «Технический Регламент о требованиях пожарной безопасности», силовые выключатели не являются объектом обязательной сертификации. На этом основании, желающие могут пройти добровольную пожарную сертификацию. Для этого потребуется предоставить технические документы, документы на предприятие заявителя и изготовителя, имеющиеся сертификаты на выключатели и производство. Максимальный срок действия пожарного сертификата 3 года. Процедура оформления и схемы не отличаются от схем обязательной сертификации. Можно оформить на партию и на серийный выпуск. В зависимости от выбранной схемы потребуется проведение испытаний и анализ производства. При наличии добровольного пожарного сертификата, уровень доверия со стороны клиентов к данной продукции в разы увеличивается.

Проект РЗА

Сайт о релейной защите и цифровых технологиях в энергетике

Защита и автоматика трансформатора напряжения 6(10) кВ

В этой статье мы будем говорить про шинный трансформатор напряжения (ТН). Данный раздел РЗА интересен тем, что никакой релейной защиты и автоматики ТН как таковой нет. Сам ТН 6(10) кВ защищает предохранитель, а его защита и автоматика относятся к общеподстанционным.

Сигнализация об ОЗЗ по напряжению 3Uo

Обязательная и очень важная функция в сетях с изолированной и компенсированной нейтралью.

3Uo очень надежный и стабильный признак наличия ОЗЗ, в отличии от тока 3Io.

Емкостной ток сдвинут относительно напряжения до 90 гр. включительно, поэтому когда он максимальный, то напряжение имеет минимальное значение. Все это способствует появлению неустойчивых замыканий, которые токовая селективная защита от ОЗЗ не всегда может зафиксировать.

Напряжение 3Uо при ОЗЗ всегда появляется мгновенно, а при исчезновении тока замыкания, снижается медленно. Это свойство 3Uo позволяет легко фиксировать это напряжение и строить на базе данного эффекта надежную сигнализацию.

Недостатком сигнализации ОЗЗ по 3Uо является то, что напряжение повышается на всей секции, и при этом невозможно выявить поврежденный фидер.

Защита минимального напряжения (ЗМН)

Используется в комплектах РЗА ТН 6(10) кВ как групповая защита при потере питания своей секцией. Обычно имеет две ступени, отключающие свой объем нагрузки. Чаще всего применяется на подстанциях с двигателями, например, для обеспечения самозапуска ответственных потребителей путем отключения менее ответственных.

Групповая ЗМН может не использоваться, если в терминалах защиты двигателей есть индивидуальные ЗМН, поэтому защита в терминале ТН 6(10) кВ необязательна, хотя почти всегда там реализована.

Автоматическая частотная разгрузка (АЧР/ЧАПВ)

Широко применяется в современных проектах в целях экономии средств на отдельный терминал АЧР (это допускается не всегда). Имеет несколько уставок АЧР и несколько очередей отключения нагрузки, чем достигается гибкое дозированное отключение потребителей для восстановления баланса активной мощности в энергосистеме.

АЧР — это противоаварийная автоматика последнего рубежа, когда все остальные меры воздействия (АЛАР, форсировка возбуждения генераторов и т,д.) не принесли нужного результата. В общем, это даже не релейная защита, а гораздо круче и важнее.

Почему эту функцию интегрируют в терминал защиты и автоматики ТН? Просто удобно измерять частоту напряжения, а не тока, причем делать это нужно в месте подключения нагрузки. Вот и получается «напряжение шин», а его измеряет именно блок ТН.

При восстановлении частоты обычно запускается алгоритм частотного АПВ, когда потребители очередями вводятся в работу.

Вот такие они, одновременно простые и сложные, защиты и автоматика трансформатора напряжения 6(10) кВ.

Разработчик ООО «НПП Микропроцессорные технологии», www.i-mt.net

Алтей-БЗП содержит все перечисленные в статье защиты

Для совсем «зеленых» добавлю, что 3U0 в цепях ТН появляется на концах разомкнутого треугольника, при КЗ на землю. В нормальном режиме работы, на концах разомкнутого треугольника 3U0 нет, есть небольшое напряжение небаланса. Так же 3U0 не будет, если у вас вдруг появился неполнофазный режим (обрыв фазы), но бывают случаи (как у нас на работе) в МП терминал заводиться цепи звезды, а 3U0 он уже вычисляет сам, и при обрыве фазы в звезде, он может выдать 3U0, хотя по факту 1ф КЗ нет. В этом вижу недостаток нашего данного проекта, лучше бы непосредственно был заведен аналоговый сигнал с разомкнутого треугольника.

При обрыве фазы ТН (например, перегорании предохранителя) в «разомкнутом треугольнике» также появится напряжение порядка 15..25 Вольт в зависимости от типа ТН (проверено экспериментами).

Возможно, на советском ТН тоже проводили эксперимент, намеренно делали неполнофазный режим, ничего не показывало в треугольнике.

3I0 это емкостной ток ?скажите а можно по нему судить необходимость включения ДГК на секции ?

Да, это емкостной ток. ДГР с системой управления измеряет емкость сети и настраивается так, чтобы компенсировать ее при ОЗЗ

Имейте ввиду, что предлагаемый терминал Алтей-БЗП не удовлетворяет по АЧР требованиям Системного Оператора (а кроме него АЧР и нафиг никому не нужен) в части df/dt = 10-30 Гц/сек и возврата АЧР-2 совмещенной +0,1- +0,4 Гц.

Почему-то в статье нет в перечне защит функции «Контроль цепей напряжения», которая всегда присутствует в электромеханике и сигнализирует о потере цепей напряжения, например при выбитом АВ 100В и заблокированном АВР и ЗМН, а также упоминания, про то, на ТН может выполняться куча пусковых функций по напряжению (для ДЗШ, ЗДЗ, АВР, форсировки СД и т.д.)

Это не предлагаемый терминал, а просто пример. Если он не удовлетворяет требованиям СО, то об этом нужно писать разработчику. Возможно это так.
КЦН в принципе нужно добавить, здесь согласен. Хотя он может быть в составе той же ЗМН. По остальным защитам вопрос спорный. Зачем пуск ДЗШ по напряжению? ЗДЗ делают с пуском по току, а не по напряжения (хотя такая функция номинально присутствует в терминала ни разу не видел ее реальное применение). АВР имеет свой пусковой орган по напряжению, ему блок ТН не требуется. На серьезных двигателях есть своя станция управления, не думаю, что терминал ТН должен управлять форсировкой СД.
Также в начале серии я писал, что буду рассматривать только стандартные функции РЗА. Всего разнообразия не счесть, да и это только путает начинающих специалистов.

Читать еще:  Правила испытания автоматических выключателей

1) КЦН и ЗМН имеют логику наоборот, т.е. с разными уставками по напряжению и по времени (ведь у вас не может же быть Кв=1?). Можно использовать общие ИО напряжения, но ЗМН — это КОНШ, а КЦН — это КННШ и уставки будут разные.
2) Пуск неполной ДЗШ и ЗДЗ по напряжению — это типовое решение всех советских схем на электромеханике, а их еще в эксплуатации «вагон и маленькая тележка», а весь новодел на микропроцессорах — это самопальная сборная солянка. Почему:
— блокировка ДЗШ по напряжению выполняется по двум причинам: а) при недостаточной чувствительности защиты — это позволит уменьшить уставку по току, б) это защита от «дурака» и ошибки, когда при проверке ввода или СВ можно запросто отключить свою или чужую секцию
— Блокировка ЗДЗ по току не всегда закрывает всю зону присоединения, а закрывает только часть ниже ТТ, т.е. при КЗ выше ТТ дуговая будет неработоспособна (особенно актуально для вводных ячеек, где весь кабельный отсек оказывается незащищенным). Блокировка ЗДЗ по напряжению позволяет правильно работать защите на всех участках ПС от ввода до отходящего кабеля. Для правильного и безаварийного функционирования этой логики необходимо добавить узел автоматического перевода ЗДЗ на сигнал при срабатывании ЗДЗ и отсутствии пуска по напряжению.
3) В схеме пуска АВР обязательно участвует контроль состояния АВ 100 Вольт и положение выкатного элемента ТН — а это непосредственно элементы автоматики ТН

1) “КЦН и ЗМН имеют логику наоборот” – это как? То, что вы описываете относится к логике контроля напряжения на линии/шинах при направленном АПВ. КЦН – это контроль исправности цепей напряжения (на обрывы и КЗ вторичных цепей ТН). Эти алгоритмы никак не связаны.

2) Если речь о неполной ДЗШ, то там действительно применяется пуск отсечки по напряжению, но эта защита устанавливается на шины генераторного напряжения станций. Мы рассматриваем только подстанции. Я писал об этом в первой статье.

Да и при использовании МП РЗА пуск неполной ДЗШ по напряжению будет в терминале ДЗШ, а не ТН. Использование внешних дискретов для передачи блокирующего сигнала увеличивает время срабатывания, что для ДЗШ шин станций критично. Тогда уж можно применять направленную ЛЗШ, вместо неполной ДЗШ. На ГТЭС/ГПЭС сейчас так и делают.

3) Блокировка ЗДЗ по току всегда закрывает всю зону защиты (ячейки КРУ). Просто ток нужно измерять на вводе и СВ, а не на отдельном фидере. Это стандартное решение.

При дуге в ячейке подключения ввода (ваш пример) напряжение действительно даст правильный пуск для дуговой защиты, в отличии от тока. Вот только на РТП – это бесполезно. Отключить КЗ в этом случае можно только сверху, дуговая здесь бессильна. Сегодня для этой цели стали использовать ДЗЛ 6(10) кВ, если объект ответственный.

Для ПС пуск МТЗ нужно брать от МТЗ силового трансформатора. Поэтому пуск по напряжению не имеет преимуществ перед пуском по току и его обычно не используют.

И вообще, “типовое советское решение по ЗДЗ” – звучит странно потому, что дуговую защиту стали внедрять относительно недавно. Большинство “советских” подстанций вообще не имеет дуговой защиты, кроме, может клапанной. Но ей пуск не требуется.

4) Контроль состояния АВ и тележки ТН – это элементы алгоритма КЦН. Их нужно реализовывать в ТН, с этим согласен.

— Логика наоборот: ЗМН это реле минимального напряжения, а КЦН — это реле максимального напряжения. КОНШ и КННШ — это действительно термины из АПВ, но я хотел вам показать, что это контроль наличия и контроль отсутствия напряжения на шинах — это разная логика и их не может выполнять общий ИО.
— насчет неполной двухступенчатой ДЗШ (см. рисунок) у вас неверная информация, КРУ подстанций выпуска 80-90-х годов выпуска активно оснащались ей. Ее ставили в ячейках ТН. Наличие ДЗШ позволяло не ставить защиты на вводах и понижать ступени селективности в голове питающих подстанций. Вы ее видимо путаете с ускоряемой ЛЗШ на электромеханике, которую действительно иногда ставили на объектах генерации.
— также КРУ подстанций 80-90-х кодов выпуска активно оснащались клапанной ЗДЗ с пуском по напряжению (защита от пинка/ сотрясения).

Я и не говорил, что у ЗМН и КЦН один пусковой орган. КЦН может быть составной частью алгоритма ЗМН, как, например, блокировка от качаний может быть составной частью ДЗ. Хотя может быть и отдельным алгоритмом, это да.

Насчет неполной ДЗШ я ничего не путаю. Она стандартно идет на шины генераторного напряжения, где несколько питающих присоединений и много отходящих с реакторами. То, что вы прислали — такое вижу действительно впервые. Если не ставить МТЗ ввода, то как вы будете обеспечивать дальнее резервирование защит линий? И как эту ДЗШ отстроить от КЗ на линиях, если нет реакторов? Что это за книга, интересно почитать?
Также интересно, сколько реальных объектов по такой схеме вы знаете? Очень сомневаюсь, что это типовое решение, которое стоит упоминать в материалах для начинающих релейщиков.

По пуску ЗДЗ по напряжению спорить не вижу смысла, но и записывать его в функции ТН тоже не буду) Есть пуск по току, надо использовать его. Ток есть всегда, а ТН на упрощенных ТП может и не ставиться. Что вы тогда будете делать, отказываться от ЗДЗ? Также это дополнительная уставка, которую нужно считать, а МТЗ ввода уже есть. Минусов куча, а плюсы я не вижу

Дмитрий, у меня сейчас на техобслуживании больше 50 подстанций 6-10 кВ со схемой неполной ДЗШ. Это типовая схема КРУ для промышленных предприятий. Дальнее резервирование осуществляется 2 ступенью ДЗШ.
1 ступень — это скоростная защита шин с выдержкой 0,2-0,3 секунды, ступень блокируется при пуске защит отходящих линий.
2 ступень — это МТЗ шин, отстроенная от МТЗ присоединений.
Защита действует на отключение ввода, СВ, всех двигателей и запрет АВР.

«ступень блокируется при пуске защит отходящих линий» — а если КЗ на двигателе, то не блокируется? На всех двигателях стоит дифференциалка?

Дмитрий, разве линия к двигателю не является отходящей линией? Разумеется блокируется от отсечки или ДЗД. Смотрите схему вверху для выключателя Q4. Любой сигнал блокировки выкидывается на шинку ЗШ. Наличие сигнала на этой шинке переключает действие ДЗШ с 1 на 2 ступень. Суть такая — если сработала защита присоединения, но отказал выключатель, то ДЗШ 2 ступенью добьет секцию.

Понятно, но это по-сути та же ЛЗШ. Пусковой орган и куча контактов снизу. Только пусковой орган дифференциальный. Почему в новом проекте нельзя использовать простую ЛЗШ? СВ ведь отключен в норм. режиме. Всегда одно питающее присоединение
Если хотите, напишите про эту защиту статью, я ее размещу под вашим авторством. В типовые функции защит ввода/ТН я это вписывать не хочу

Дмитрий, кстати о высоких технологиях. ДЗШ БЭхххх х6х фирмы ЭКРА, позиционирующей себя оцифровщицей алгоритмов отечественной электромеханики, опционально предусмотрен пуск ПО ДЗШ по ЗМН U1 и наличию U2 по схеме И/ИЛИ.

Производители РЗА всегда старается реализовать в терминале максимум функций. Так проще производить и продавать. Не факт, что все они используются. Да и при чем здесь функции терминала ТН? В БЭ это ведь свои органы напряжения

Граждане, а тут что, уже реклама пошла? Все статьи были по технике дела, в худшем случае с упоминанием БМРЗ (что вполне понятно). Тут вон Алтей отсвечивает. Не хотелось бы, чтобы сайт превратился в рекламный, весь смысл его пропадет.

Рекламы здесь никакой нет потому, что мне за эти статьи никто не платит. Хотя, судя по вашей реакции, могли бы) Это интересно.
Если почитаете всю серию, то увидите и БМРЗ, и БЭ, и Сириус, и другие терминалы. Делаю я это намеренно, чтобы картинки максимально отличались друг от друга, иначе они сольются в однообразную ленту (кроме этого стараюсь периодически вставлять статьи на другие темы). Также должна быть связь с реальным миром и считаю полезным делать привязку того, что описано в статье с конкретным железом.

Дмитрий, добрый день! Пример: ПС с одиночной секционированной системой шин. Два независимых ввода — каждый на свою секцию. Оперативный ток — выпрямленный. Как корректно определить, сколько ТН нужно устанавливать в этой схеме, да и вообще? Два на секциях, или два на вводах, или четыре (по два на секциях и на вводах)? Тут мне одни «проектанты» предложили третий вариант… Кстати, Дмитрий, не планируешь ли ты посвятить хотя бы пару публикаций вопросам противоаварийной автоматики?

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector