Ivalt.ru

И-Вольт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Схема однофазного двигателя центробежным выключателем

Подключение однофазного двигателя

Как правило, наши дома, гаражи и другие хозяйственные постройки подключены к источнику 220V, представляющую однофазную сеть. В связи с этим все потребители рассчитываются для работы от однофазной сети, выполненной двумя проводами, один из которых является нулевым, а другой фазным. В работе многих электрических приборов задействованы однофазные электрические двигатели, подключение которых связано с некоторыми тонкостями.

Как определиться с типом двигателя

Если двигатель новый, то особых проблем не будет, поскольку на его табличке указан тип двигателя и другие данные. Если двигатель подвергался ремонту, то определение его типа связано с некоторыми трудностями: табличку могли просто потерять или повредить ее механически. Поэтому в таких случаях лучше знать, как самостоятельно определить тип двигателя.

Коллекторные двигатели

Определить, двигатель коллекторный или асинхронный, совсем несложно, поскольку они имеют разное строение. Характерное отличие коллекторного двигателя – это наличие щеток, которые находятся неподвижно, а также коллектора, который вращается и представляет набор медных пластин. К этим пластинам прижимаются щетки, передающие электрический ток на обмотку якоря двигателя.

Достоинство таких двигателей заключается в том, что они быстро разгоняются и позволяют получить большие обороты. К тому же, поменяв полярность, допустимо сменить направление вращения устройства. Не менее важным можно считать тот фактор, что можно легко организовать контроль частоты вращения двигателя, с его регулировкой в широких пределах.

К существенному минусу коллекторных двигателей следует отнести их повышенную шумность в работе, особенно на повышенных оборотах. Что касается небольших оборотов, то работу этих двигателей можно считать вполне приемлемой. Следует учитывать также тот факт, что трение щеток и коллектора приводят к тому, что изнашиваются, как щетки, так и коллектор. В результате приходится менять щетки или протачивать коллектор. Если не осуществлять постоянного контроля за состоянием щеток и коллектора, то имеется высокая вероятность того, что устройство придется ремонтировать.

Асинхронные двигатели

Конструкция асинхронного двигателя несколько отличается от конструкции коллекторного двигателя несмотря на то, что у него также имеется статор и ротор (якорь), при этом асинхронные двигатели могут быть, как однофазными, так и трехфазными. Как правило, бытовые электроприборы оснащаются однофазными асинхронными двигателями.

Достоинство асинхронных двигателей заключается в том, что они более бесшумные, поэтому их устанавливают в бытовых приборах, работа которых связана с критическими уровнями шумов при длительной работе.

Различают два типа асинхронных двигателей – конденсаторные и с пусковой обмоткой (бифилярные). Пусковая обмотка необходима лишь для запуска двигателя, после чего она отключается и в работе двигателя никакого участия не принимает.

Конденсаторные двигатели отличаются тем, что дополнительная конденсаторная обмотка работает постоянно. Эта обмотка смещается по отношению к рабочей обмотке на 90 градусов. Благодаря такому построению, возможно менять направление вращения двигателя. Наличие конденсатора на двигателе свидетельствует о том, что это конденсаторный двигатель.

Если измерить сопротивление пусковой и рабочей обмоток, то можно легко определить тип асинхронного двигателя. Как правило, пусковая обмотка выполняется более тонким проводом и ее сопротивление больше в несколько раз, по сравнению с рабочей обмоткой. Нормальная работа таких двигателей обеспечивается за счет специального включающего устройства. Конденсаторные двигатели запускаются обычным выключателем, тумблером или кнопкой.

Варианты подключения однофазных асинхронных двигателей

Двигатели с пусковой обмоткой

Чтобы управлять работой асинхронным двигателем, имеющим пусковую обмотку, разработана специальная кнопка. Она состоит из трех контактов, один из которых отключается после включения устройства. Называется эта кнопка «ПНВС» и включает в себя средний контакт, который не фиксируется после включения и два крайних контакта с фиксацией.

Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена

Если двигатель с пусковой обмоткой, то у него может быть 3 или 4 вывода. Измерив их сопротивление, можно узнать, какой из концов или каких 2 конца имеют отношение к пусковой обмотке.

У двигателя, имеющего 3 вывода, один из концов пусковой обмотки уже соединен с рабочей обмоткой. Как уже было сказано выше, рабочая обмотка всегда имеет меньшее сопротивление, по сравнению с пусковой. У двигателя с 4-мя выводами пусковую обмотку придется соединять с рабочей самостоятельно, на пусковой кнопке. В результате, получится также 3 вывода, которые принимают участие в работе двигателя:

  • Один конец от рабочей обмотки.
  • Другой конец от пусковой обмотки.
  • Третий конец общий (соединение рабочей и пусковой обмотки).

Поэтому подключение таких двигателей ничем не отличается друг от друга, достаточно найти обмотки и соответствующим образом подключить их на реле ПНВС.

  • Подключение однофазного двигателя с пусковой обмоткой посредством кнопки ПНВС.

Правильное подключение:

Три провода, выходящие из двигателя, подключаются так: провод, представляющий пусковую обмотку, крепится к среднему контакту (верхнему), а остальные два на крайние (тоже верхние) контакты. Питание 220 V подается на крайние контакты (нижние), при этом средний нижний контакт соединяется перемычкой с боковым контактом (нижним), который включает рабочую обмотку, но не общую, представляющую соединение рабочей и пусковой обмотки. В противном случае двигатель просто не запустится.

Конденсаторные двигатели

Существует три варианта (схемы) подключения конденсаторных двигателей к сети 220V. Без конденсаторов двигатель работать не будет. Он не запустится и будет гудеть. Такая длительная работа может привести к перегреву и выходу его из строя.

Первая схема связана с включением конденсатора в цепь питания конденсаторной обмотки. Подобная схема легко запускает двигатель, но его работа связана с низким К.П.Д. Схема, где конденсатор включен к цепи питания рабочей обмотки обладает лучшими показателями к.п.д., но при этом возникают проблемы с пуском двигателя. Поэтому первая схема используется для условий с тяжелым пуском, если при этом не требуются высокие рабочие характеристики.

Схема с двумя конденсаторами

Третий вариант подключения связан с установкой 2-х конденсаторов, поэтому схема представляет что-то среднее между вышеописанными двумя вариантами. Схема располагается в середине и более детально ее подключение представлено на фото ниже. Для реализации такой схемы включения потребуется кнопка ПНВС. Она необходима лишь для того, чтобы кратковременно подключать второй конденсатор, на время разгона двигателя. После отключения пускового конденсатора в работе останется две обмотки, причем пусковая обмотка должна быть подключена через конденсатор.

Подключение с двумя конденсаторами

Другие схемы подключения не требуют кнопки ПНВС, поскольку подключение конденсаторов фиксированное, на все время работы электродвигателя. Поэтому достаточно воспользоваться обычным автоматическим выключателем с фиксацией включенных контактов.

Как подключить однофазный двигатель

Чаще всего к нашим домам, участкам, гаражам подведена однофазная сеть 220 В. Потому оборудование и все самоделки делают так, чтобы они работали от этого источника питания. В данной статье рассмотрим, как правлильно сделать подключение однофазного двигателя.

Асинхронный или коллекторный: как отличить

  • 1 Асинхронный или коллекторный: как отличить
    • 1.1 Как устроены коллекторные движки
    • 1.2 Асинхронные
  • 2 Схемы подключения однофазных асинхронных двигателей
    • 2.1 С пусковой обмоткой
    • 2.2 Конденсаторный
      • 2.2.1 Схема с двумя конденсаторами
      • 2.2.2 Подбор конденсаторов
      • 2.2.3 Изменение направления движения мотора

Вообще, отличить тип двигателя можно по пластине — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.

Так выглядит новый однофазный конденсаторный двигатель

Как устроены коллекторные движки

Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.

Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона. Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки. Потому и используются подобные двигатели в большей части бытовой и строительной техники.

Читать еще:  Буквенное обозначение выключателя разъединителя

Строение коллекторного двигателя

Недостатки колелкторых двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д.. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.

Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.

Асинхронные

Асинхронный двигатель имеет стартер и ротор, может быть одно и трех фазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.

Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.

Строение асинхронного двигателя

Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная — смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Более точно определить бифолярный или конденсаторный двигатель перед вами можно при помощи измерений обмоток. Если сопротивление вспомогательной обмотки меньше в два раза (разница может быть еще более значительная), скорее всего, это бифолярный двигатель и эта вспомогательная обмотка пусковая, а значит, в схеме должен присутствовать выключатель или пусковое реле. В конденсаторных двигателях обе обмотки постоянно находятся в работе и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.

Схемы подключения однофазных асинхронных двигателей

С пусковой обмоткой

Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

  • один с рабочей обмотки — рабочий;
  • с пусковой обмотки;
  • общий.

С этими тремя проводами и работаем дальше — исползуем для подключения однофазного двигателя.

Со всеми этими

      Подключение однофазного двигателя с пусковой обмоткой через кнопку ПНВС

    подключение однофазного двигателя

Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайн ие (произвольно). К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифолярного) через кнопку.

Конденсаторный

При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

Схемы подключения однофазного конденсаторного двигателя

Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

Схема с двумя конденсаторами

Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

  • рабочий конденсатор берут из расчета 0,7-0,8 мкФ на 1 кВт мощности двигателя;
  • пусковой — в 2-3 раза больше.

Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите конденсатор специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.

Изменение направления движения мотора

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

Многоскоростные однофазные конденсаторные электродвигатели

Однофазные асинхронные двигатели выпускаются для работы без регулирования частоты вращения. В тех же случаях, когда необходимо изменять частоту вращения, чаще всего используются двигатели с изменением числа пар полюсов.

В целом, для изменения скорости однофазного двигателя можно применить 3 различных способа. Один состоит в том, что в статоре помещаются 2 полных комплекта обмоток, каждый для различного числа полюсов. Тогда согласно уравнению 2 различные скорости получаются при одной и той же частоте сети. Другие 2 способа состоят в изменении напряжения на зажимах двигателя или в изменении числа витков главной обмотки путем ответвлений от нее.

Способ, основанный на использовании 2 комплектов обмоток, применяется главным образом для двигателей с расщепленной фазой и двигателей с конденсаторным пуском. Способы, основанные на изменении напряжения или использовании обмотки с ответвлениями, применяются главным образом для конденсаторных двигателей с постоянно включенной емкостью.

В настоящее время для привода различных механизмов широкое распространение получили многоскоростные асинхронные конденсаторные электродвигатели (электродвигатели с одной постоянно включенной емкостью). Такой тип электродвигателей не требует дополнительных элементов, необходимых для включения в сеть, а также позволяет достаточно просто менять направление вращения вала. Для этого достаточно поменять в схеме местами концы главной или вспомогательной обмоток.

В конденсаторных двигателях применяются основные схемы включения обмоток, показанные на рис. 1. Наибольшее распространение получила так называемая параллельная схема соединения обмоток (рис. 1, а). Как видно из рисунка, обмотки статора включаются в сеть питания параллельно. Фазосдвигающая емкость С включается последовательно со вспомогательной обмоткой.

Величина емкости конденсатора выбирается из условий обеспечения требуемых характеристик электродвигателей. В основном в конденсаторных двигателях емкость выбирается такой, чтобы сдвиг фаз токов в главной и во вспомогательной обмотках в номинальном режиме был близок к 90°. В этом случае двигатель имеет наилучшие энергетические показатели в рабочей точке, но ухудшаются пусковые.

Рис. 1. Схемы соединения обмоток асинхронных двигателей

Изменение частоты вращения конденсаторных двигателей осуществляется, чаще всего за счет изменения числа пар полюсов. Для этого на статоре укладывается либо два комплекта обмоток с различным числом полюсов, либо один комплект, с переключением числа полюсов.

В тех же случаях, когда не требуется значительного диапазона регулирования частоты вращения, используется наиболее простой способ — изменение числа витков рабочей обмотки. В этом случае при неизменности напряжения сети изменяется величина магнитного потока электродвигателя и, следовательно, электромагнитный момент и частота врашения ротора.

Двухскоростные двигатели при обмотках с ответвлениями

Ранее было указано, что скорость однофазного двигателя может быть изменена или путем изменения напряжения на его зажимах, или путем изменения числа витков его вторичнной обмотки. Первый способ делает необходимым примение автотрансформатора и используется главным образом для конденсаторных двигателей с постоянно включенной емкостью, имеющих на валу вентилятор.

При автотрансформаторе можно получить и больше, чем 2 скорости. Изменение числа витков главной обмотки получается путем ответвлений от нее. Статор тогда имеет 3 обмотки: главную, промежуточную и вспомогательную. Первые 2 обмотки имеют одну и ту же магнитную ось, т. е. промежуточная обмотка наматывается в тех же пазах, что и главная обмотка (над ней).

Практическая реализация этого способа осуществляется следующим образом. В пазах статоре помимо проводников рабочей (РО) и конденсаторной обмоток (КО), укладываются проводники дополнительной обмотки (ДО). В результате комбинации различных схем включения обмоток (рис. 2) удастся получить при неизменной величине питающего напряжения различные механические характеристики электродвигателя.

Рис. 2. Схемы соединений статорных обмоток многоскоростного конденсаторного двигателя при минимальной (а), повышенной (б) и максимальной частоте вращения (в)

В процессе регулирования частоты вращения в многоскоростных конденсаторных электродвигателях возникают переходные процессы, связанные с изменением схем включения обмоток статора. Эти процессы протекают, как правило, при незатухающих магнитных полях и могут вызнать значительные броски токов и перенапряжения в обмотках двигателя и фазосмещающем конденсаторе.

Двухскоростные двигатели с 2 комплектами обмоток

Размещение 2 комплектов обмоток, т. е. 2 главных обмоток и 2 вспомогательных обмоток, требует значительного увеличения размеров. Для того чтобы уменьшить эти размеры, часто применяется соединение для вспомогательной или низкоскоростной обмотки, при котором число катушечных групп получается меньше числа полюсов.

На рис. 3 показана схема соединений обмоток для 4 и 6 полюсов (примерно 1435 а 950 об/мин при 50 гц). Внешняя обмотка — 4-полюсная главная обмотка. Следующая — 6-полюсная главная обмотка. Третья — 4-полюсная вспомогательная обмотка, имеющая только 2 катушечные группы. Внутренняя обмотка — 6-полюсная вспомогательная обмотка, имеющая также только 2 катушечные группы.

Рис. 3. Схема соединений для 2-скоростного (4 и 6 полюсов) двигателя.

На рис. 3 обе вспомогательные обмотки имеют уменьшенное число катушечных групп. Можно также и главную обмотку сделать такого же типа.

Рассмотрим 2 примера. Статорная обмотка для 4 и 8 полюсов может иметь нормальную 4-полюсную главную обмотку и 3 другие обмотки с уменьшенным числом катушечных групп, т. е. 8-полюсную главную обмотку с 4 катушечными группами, 4-полюсную вспомогательную обмотку с 2 катушечными группами и 8-полюсную вспомогательную обмотку с 4 катушечными группами.

Статорная обмотка для 6 и 8 полюсов может иметь нормальную 6-полюсную главную обмотку, две 8-полюсные обмотки с уменьшенным числом групп, т. е. 8-полюсную главную обмотку и 8-полюсную вспомогательную обмотку с 4 полюсными группами каждая, а 6-полюсную вспомогательную обмотку с 2 катушечными группами. 6-полюсная вспомогательная обмотка может быть также выполнена в виде нормальной обмотки, т. е. с 6 катушечными группами.

На рис. 4 показана схема 2-скоростного двигателя с расщепленной фазой с 2 обмотками и здесь же показано присоединение его к сети. Соединения выполнены таким образом, что требуется только 1 пусковой выключатель. Этот пусковой выключатель должен выключаться при 75 — 80% синхронной скорости низкоскоростной обмотки.

Рис. 4. Схема двухскоростного двигателя с расщепленной фазой

Если схема, показанная на рис. 4, применяется для двигателя с конденсаторным пуском, то используется или 1 конденсатор, соединенный последовательно с пусковым выключателем, или 2 конденсатора, 1 из которых соединяется последовательно с выводом П2, а другой — с выводом П21.

Если двигатель всегда можно пускать при соединении, соответствующем одной и той же скорости, то одна из вспомогательных обмоток может быть исключена. Пуск в этом случае частично или полностью автоматизируется.

Многоскоростные асинхронные однофазные электродвигатели ДАСМ

Для достижения больших частот вращения в бытовой технике часто необходимы электродвигатели с большим соотношением скоростей вращения ротора. Для этих целей применяются однофазные конденсаторные асинхронные двигатели с числами полюсов 2/12; 2/14; 2/16; 2/18; 2/24 и даже выше.

Однако изготовление двигателей с большим соотношением полюсов технологически сложно, поэтому пользуются разного рода механическими преобразователями частоты вращения, а также полупроводниковыми преобразователями частоты питающего напряжения.

Наиболее просто частота вращения в небольших пределах у этих двигателей регулируется изменением напряжения питания, для этого последовательно с обмоткой включаются дополнительные резисторы или дроссели.

Еще в СССР для привода бытовых автоматических стиральных машин был разработан двухскоростные конденсаторные электродвигатели типа ДАСМ-2 и ДАСМ-4 с числом полюсов 16/2.

Двигатель ДАСМ-2 был разработан для привода, автоматических стиральных машин емкостью 4 — 5 кг сухого белья. Первоначально он был рассчитан на номинальные мощности 75/400 Вт при частотах вращения 390/2750 об/мин.

Рис. 5. Двухскоростной конденсаторный асинхронный электродвигатель типа ДАСМ-2

На рис. 5 показаны схемы включения двигателей ДАСМ-2 и ДАСМ-4 в питающую сеть. Как видно из рисунка, двигатель ДАСМ-2 имеет на статоре четыре обмотки. Главная и вспомогательная обмотки соединены по параллельной схеме включения.

Двигатель ДАСМ-4 на низкой частоте вращения выполнен с трехфазной схемой включения в звезду, а на высокой частоте вращения — с параллельным включением обмоток статора. На статоре двигателя укреплено температурное реле РК-1-00 для защиты обмоток при перегрузках и в режимах короткого замыкания. Нормально замкнутые контакты реле включены в общий вывод статора электродвигателя.

Рис. 5. Схемы подключения двухскоростных электродвигателей к сети питания: а — электродвигателя ДАСМ-2; б — электродвигателя ДАСМ-4. Г.О. — главная обмотка; В.О, — вспомогательная обмотка; 1 — общий вывод обмоток малой и большой частоты вращения; 2 — конец вспомогательной обмотки большой частоты вращения; 3 — начало главной обмотки большой частоты вращения; 4 — начало вспомогательной обмотки низкой частоты вращения; 5 — начало главной обмотки низкой частоты вращения; Ср — рабочий конденсатор; Сп — пусковой конденсатор; РТ — реле тепловое защитное типа РК-1-00; РП — реле пусковое типа РТК-1-11; Р1, Р2 — контакты командоаппарата.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Подключение однофазного двигателя: схемы, проверка, видео

Чаще всего к нашим домам, участкам, гаражам подведена однофазная сеть 220 В. Потому оборудование и все самоделки делают так, чтобы они работали от этого источника питания. В данной статье рассмотрим, как правлильно сделать подключение однофазного двигателя.

  1. Асинхронный или коллекторный: как отличить
  2. Как устроены коллекторные движки
  3. Асинхронные
  4. Схемы подключения однофазных асинхронных двигателей
  5. С пусковой обмоткой
  6. Конденсаторный
  7. Схема с двумя конденсаторами
  8. Подбор конденсаторов
  9. Изменение направления движения мотора

Асинхронный или коллекторный: как отличить

Вообще, отличить тип двигателя можно по пластине — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.

Так выглядит новый однофазный конденсаторный двигатель

Как устроены коллекторные движки

Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.

Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона. Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки. Потому и используются подобные двигатели в большей части бытовой и строительной техники.

Строение коллекторного двигателя

Недостатки колелкторых двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д.. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.

Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.

Асинхронные

Асинхронный двигатель имеет стартер и ротор, может быть одно и трех фазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.

Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.

Строение асинхронного двигателя

Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная — смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Более точно определить бифолярный или конденсаторный двигатель перед вами можно при помощи измерений обмоток. Если сопротивление вспомогательной обмотки меньше в два раза (разница может быть еще более значительная), скорее всего, это бифолярный двигатель и эта вспомогательная обмотка пусковая, а значит, в схеме должен присутствовать выключатель или пусковое реле. В конденсаторных двигателях обе обмотки постоянно находятся в работе и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.

Схемы подключения однофазных асинхронных двигателей

С пусковой обмоткой

Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

  • один с рабочей обмотки — рабочий;
  • с пусковой обмотки;
  • общий.

С этими тремя проводами и работаем дальше — исползуем для подключения однофазного двигателя.

Со всеми этими

      Подключение однофазного двигателя с пусковой обмоткой через кнопку ПНВС

    подключение однофазного двигателя

Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно). К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифолярного) через кнопку.

Конденсаторный

При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

Схемы подключения однофазного конденсаторного двигателя

Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

Схема с двумя конденсаторами

Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

Подбор конденсаторов

Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

  • рабочий конденсатор берут из расчета 0,7-0,8 мкФ на 1 кВт мощности двигателя;
  • пусковой — в 2-3 раза больше.

Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите конденсатор специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.

Изменение направления движения мотора

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector