Ivalt.ru

И-Вольт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Селективность автоматических выключателей по току короткого замыкания

Селективность автоматов по току. Как обеспечить, ПУЭ.

Как известно профессиональным электрикам, используя автоматические выключатели бытового назначения, обеспечить гарантированную селективную защиту при коротких замыканиях невозможно.

Обеспечить, с помощью автоматических выключателей бытового назначения, можно лишь частичную селективность при небольших перегрузках и небольших токах короткого замыкания. Почему так, а не иначе – я расскажу далее в этой статье.

Схема работы автоматов

Представление о том, что такое селективность, можно получить, если рассмотреть схему работы домашнего электрического щита.

При коротком замыкании на кухне или в другом помещении должен сработать только тот защитный аппарат, который относится к данной цепи. Автомат на вводе при этом не отключится и будет проводить электричество к остальным участкам. Если по каким-либо причинам выключатель для кухни не сработал, тогда неисправность проконтролирует автомат ввода, отключив питание во всех электрических цепях.

Классификация

Что такое селективность автоматов, можно представить в виде их подборок и схем подключения.

  1. Полная. При последовательном подключении нескольких аппаратов на сверхтоки реагирует тот, который расположен ближе к аварийной зоне.
  2. Частичная. Защита аналогична полной, но действует только до определенной величины сверхтока.
  3. Временная. Когда у последовательно подключенных аппаратов с одинаковыми токовыми характеристиками устанавливается разная временная выдержка на срабатывание с ее последовательным увеличением от участка с неисправностью до источника питания. Временная селективность автоматов используется с целью подстраховки друг друга по скорости отключения. Например: первый срабатывает через 0,1 сек, второй — через 0,5 сек, третий — через 1 сек.
  4. Токовая. Селективность аналогична временной, только параметром является максимально-токовая отсечка. Аппараты выбирают в сторону уменьшения уставки от источника питания до объектов загрузки (например, 25 А на вводе и далее, 16 А к розеткам и 10 А — к освещению).
  5. Времятоковая. В автоматах предусмотрена реакция на ток, а также — время. Автоматы делятся на группы A, B, C, D. На них организовать временную селективность при КЗ (коротком замыкании) сложно, поскольку характеристики аппаратов налагаются друг на друга. Максимальный защитный эффект достигается в группе A, которая применяется преимущественно для электронных цепей. Наиболее распространены устройства типа С, но бездумно и где попало устанавливать их не рекомендуется. Группа D применяется для систем электропривода с большими пусковыми токами.
  6. Зонная. За работой электросети следят измерительные устройства. При достижении порога уставки (заданного предельного значения) данные передаются в центр контроля, где выбирается автомат для отключения. Способ используется в промышленности, поскольку является сложным, дорогостоящим и требующим отдельных источников питания. Здесь применяются электронные расцепители: при обнаружении неисправности нижерасположенный автомат подает сигнал вышерасположенному и тот начинает отсчитывать интервал времени, составляющий около 50 мсек. Если расположенный ниже выключатель за это время не сработает, включается тот, который расположен выше по цепи.
  7. Энергетическая. Автоматы имеют высокое быстродействие, за счет чего ток КЗ не успевает достичь максимума.

Характеристики срабатывания защитных автоматических выключателей

Класс АВ, определяющийся этим параметром, обозначается латинским литером и проставляется на корпусной части автомата перед цифрой, соответствующей номинальному току.

В соответствии с классификацией, установленной ПУЭ, защитные автоматы подразделяются на несколько категорий.

Автоматы типа МА

Отличительная черта таких устройств – отсутствие в них теплового расцепителя. Аппараты этого класса устанавливают в цепях подключения электрических моторов и других мощных агрегатов.

Защиту от перегрузок в таких линиях обеспечивает реле максимального тока, автоматический выключатель только предохраняет сеть от повреждений в результате воздействия сверхтоков короткого замыкания.

Приборы класса А

Автоматы типа А, как было сказано, обладают самой высокой чувствительностью. Тепловой расцепитель в устройствах с времятоковой характеристикой А чаще всего срабатывает при превышении силой тока номинала АВ на 30%.

Катушка электромагнитного расцепления обесточивает сеть в течение примерно 0,05 сек, если электроток в цепи превышает номинальный на 100%. Если по какой-либо причине после увеличения силы потока электронов в два раза электромагнитный соленоид не сработал, биметаллический расцепитель отключает питание в течение 20 – 30 сек.

Автоматы, имеющие времятоковую характеристику А, включаются в линии, при работе которых недопустимы даже кратковременные перегрузки. К таковым относятся цепи с включенными в них полупроводниковыми элементами.

Защитные устройства класса B

Аппараты категории B обладают меньшей чувствительностью, чем относящиеся к типу A. Электромагнитный расцепитель в них срабатывает при превышении номинального тока на 200%, а время на срабатывание составляет 0,015 сек. Срабатывание биметаллической пластины в размыкателе с характеристикой B при аналогичном превышении номинала АВ занимает 4-5 сек.

Оборудование этого типа предназначено для установки в линиях, в которые включены розетки, приборы освещения и в других цепях, где пусковое повышение электротока отсутствует либо имеет минимальное значение.

Автоматы категории C

Устройства типа C наиболее распространены в бытовых сетях. Их перегрузочная способность еще выше, чем у ранее описанных. Для того, чтобы произошло срабатывание соленоида электромагнитного расцепления, установленного в таком приборе, нужно, чтобы проходящий через него поток электронов превысил номинальную величину в 5 раз. Срабатывание теплового расцепителя при пятикратном превышении номинала аппарата защиты происходит через 1,5 сек.

Таблицы селективности

Селективная защита работает в основном при превышении номинала In автоматического выключателя, т. е. при небольших перегрузках. При коротких замыканиях добиться ее значительно сложней. Для этого производители продают изделия с таблицами селективности, с помощью которых можно создавать связки с избирательностью срабатывания. Здесь можно выбирать группы аппаратов только одного изготовителя. Таблицы селективности представлены ниже, их можно найти также на сайтах предприятий.

Для проверки избирательности между вышестоящим и нижестоящим аппаратами находится пересечение строки и столбца, где «Т» — это полная селективность, а число — частичная (если ток КЗ меньше указанного в таблице значения).

Принцип логики

Для выполнения схем, использующих такой принцип, необходимы цифровые реле. Между собой реле соединяются линией «витая пара», кабелем ВОЛС или через телефонную линию (с использованием модема). С помощью таких линий приём (передача) информации осуществляется на диспетчерский пульт с разных объектов и между самими реле.

На приведённой Картинке 9, пояснён принцип работы логики. В каждом из 4-х цифровых реле применяется уставка по току, равная самой последней чувствительной ступени. Такая ступень имеет время срабатывания 0,2 с. Логическая селективность подразумевает возможность блокировки реле сигналом ЛО (логического ожидания). Такой сигнал подаётся по каналу от предыдущего реле защиты. Каждое из реле может передавать такие сигналы транзитом.

Как видно из рисунка, при КЗ в точке К1 все остальные реле, от сигнала ЛО, поданного реле К1, подвергнутся ожиданию. Реле К1 сработает и выполнит отключение. При КЗ в точке 2 аналогичным образом сработает реле К4.

Такие схемы построения логического управления требовательны к надёжности линий связи между элементами.

Расчет селективности автоматов

Защитными устройствами в основном служат обычные выключатели, селективность которых необходимо обеспечивать путем правильного выбора и настроек. Их избирательное действие для защиты, установленной ближе к источнику питания, обеспечивается путем выполнения следующего условия.

  • Iс.о.послед ≥ Kн.о.∙ Iк.пред., где: — Iс.о.послед- ток, при котором срабатывает защита; — Iк.пред. — ток короткого замыкания в конце зоны действия защиты, расположенной на большем удалении от источника питания; — Kн.о. — коэффициент надежности, зависящий от разброса параметров.

Что такое селективность при регулировании автоматов по времени, видно из соотношения ниже.

  • tс.о.послед ≥ tк.пред.+ ∆t, где: — tс.о.послед и tк.пред.- временные интервалы, через которые срабатывают отсечки автоматов, соответственно расположенных рядом и на удалении от источника питания; — ∆t — временная ступень селективности, выбираемая по каталогу.

Графическое изображение селективности

Для надежной токовой защиты электропроводки необходима карта селективности. Она представляет собой схему времятоковых характеристик аппаратов, установленных поочередно в цепи. Масштаб выбирается так, чтобы по граничным точкам было видно защитные свойства аппаратов. На практике карты селективности в проектах преимущественно не используются, что является большим недостатком и приводит к отключениям электричества у пользователей.

Соотношение номиналов должно быть как минимум 2,5 для обеспечения селективности. Но даже у них есть общие зоны срабатывания, хотя и небольшие. Только при соотношении 3,2 не наблюдается их пересечение. Но в этом случае один из номиналов может получиться завышенным и придется установить после автомата проводку большего сечения.

В большинстве случаев селективность защиты не требуется. Она нужна только там, где могут возникнуть серьезные последствия.

Если в расчете получаются завышенные значения номиналов автоматов, на вводе устанавливают рубильники или выключатели нагрузки.

Можно также применять специальные селективные автоматы.

Читать еще:  Схема двигатель с конечном выключатели

Главные функции

Ключевые задачи селективной защиты — обеспечение бесперебойного функционирования электросистемы и недопустимость сгорания механизмов при появлении угроз. Единственным условием для корректной работы такого типа защиты считают согласованность защитных агрегатов между собой.

Как только возникает аварийная ситуация, испорченный участок при помощи селективной защиты мгновенно определяется и отключается. При этом исправные места продолжают работу, а отключенные никак им в этом не мешают. Селективность существенно снижает нагрузку на электрические установки.

Базовый принцип обустройства такого типа защиты кроется в оборудовании автоматов с номинальным током, который меньше, чем у прибора на вводе. В сумме они могут превышать номинал группового автомата, но по отдельности – никогда. К примеру, при установке вводного устройства на 50 А следующий аппарат не должен обладать номиналом выше 40 А. Первым всегда сработает агрегат, находящийся максимально близко к месту ЧП.

ОБРАТИТЕ ВНИМАНИЕ! Выбор автоматов, в том числе и для защиты с абсолютной селективностью, зависит от их номинала и характеристик срабатывания, которые имеют обозначения В, С и D. Зачастую приборами, которые оберегают электросистему, служат различные виды автоматов, предохранителей, УЗО.

Таким образом, к основным функциям селективной защиты можно отнести:

  • обеспечение безопасности электрических приборов и работников;
  • быстрое выявление и отключение той зоны электросистемы, где случилась поломка (при этом рабочие зоны не прекращают функционирование);
  • снижение негативных последствий для рабочих частей электромеханизмов;
  • снижение нагрузки на составные механизмы, предотвращение поломок в неисправной зоне;
  • гарантия непрерывного рабочего процесса и постоянного электроснабжения высокого уровня.
  • поддержка оптимальной работы той или иной установки.

Селективные автоматы S750DR

Компания АВВ выпускает изделия марки S750DR, где селективность выключателей обеспечивается дополнительным токовым путем, который не разъединяется после срабатывания основного контакта при коротком замыкании.

При отключении нижерасположенного аварийного участка селективным биметаллическим контактом создается задержка по времени срабатывания. При этом основной контакт селективного выключателя возвращается на место под действием пружины. Если сверхток продолжает поступать, через 20-200 мсек отключается тепловая защита в основной и дополнительной цепях. При этом селективная биметаллическая пластина блокирует механизм расцепления, и пружина уже не сможет обратно замкнуть основной контакт.

Ограничение по току автомата обеспечивается за счет селективного резистора на 0,5 Ом и большого сопротивления электрической дуги внутри аппарата.

Селективность – это свойство защиты определять неисправный элемент

Эксплуатация электрических сетей с самого начала их появления изменилась до неузнаваемости. И в первую очередь упор был сделан на безопасность. И это понятно. Поэтому системы защиты всегда усовершенствуются, этот процесс никогда не останавливался. Но тут перед разработчиками встала задача определения неисправностей по мере их серьезности. То есть, существуют ситуации, которые можно отнести к ненормальным, но приемлемым. Есть ситуации, которые требуют оперативного вмешательства в виду возможности появления короткого замыкания и выхода из строя части электроустановки. Поэтому система защиты строилась на избирательности или селективности. Итак, селективность – это качество защитной системы отличать неисправности электрических сетей или установок, выявлять их и отключать от работающих в нормальном режиме.

Современные системы электрической защиты могут иметь селективность:

  • Абсолютную.
  • Относительную.

В первом случае защита действует только в своей зоне. Во втором случае не только в собственной зоне, но и в соседней. При этом относительная селективность обеспечивается дополнительными приборами с разными функциями. К примеру, с определенной выдержкой времени, при котором он будет срабатывать.

Существует специальный стандарт, в котором определяются все виды селективности, его номер ГОСТ Р 50030.1. В этом документе подробно расписано, по каким критериям разделяется данное понятие. Рассмотрим основные.

Селективность по сверхтокам

В первую очередь обозначим, что такое сверхтоки. Это показатели электрического тока, которые превосходят параметры тока номинального. Это касается в первую очередь силы и напряжения.

Поэтому селективность в данном случае координирует работу нескольких устройств по установленным показателям. При этом учитывается тот факт, что каждое устройство имеет свой диапазон срабатывания. Остальные же не реагируют на изменения параметров сети. То есть, получается следующая схема. Существует определенная селективность между двумя автоматическими выключателями, которые расположены в схеме последовательно.

Так вот со стороны нагрузки выключатель разрывает цепь. А со стороны подачи тока он находится в замкнутом состоянии. То есть, последний обеспечивает током все остальные участки цепи. Такая селективность называется частичная. Именно она обеспечивает неполную загрузку установки при необходимости устранить неполадки (короткое замыкание или перегруз) на одном участке. При этом остальные работают в штатном режиме.

Существует полная селективность, это когда срабатывает автоматический выключатель на входе, то есть, на питающем контуре. При этом второй выключатель, стоящий на нагрузке, не отключается. В принципе, в этом и нет смысла, потому что электрическая схема отключается в данном случае полностью.

Но тут необходимо пояснить, что существует определенная зависимость между номинальной силой тока и током перегрузки. Полная селективность обеспечивает любой показатель сверхтока. А вот в частичной действие двух выключателей совершенно происходит по-другому. Для этого учитывается селективность каждого выключателя, которая зависит от силы сверхтока. При этом сила тока, отключающая автоматический выключатель (селективное УЗО) на нагрузке должна быть меньше, чем на питании.

Существуют две основные причины, при которых есть необходимость отключать электрическую схему:

  • Перегрузка сети.
  • Короткое замыкание.

Во-первых, зона перегрузки встречается больше и чаще. Во-вторых, для защиты от этой причины в цепь устанавливается в основном тепловая защита.

Зона короткого замыкания – это диапазон величин силы тока, который превосходит номинальный в восемь-десять раз. Поэтому в данном случае используется магнитная защита. Такое событие маловероятно в электрических цепях, которые собраны грамотно. Но, как говорится, береженного бог бережет.

Методы обеспечения

Что касается зоны перегрузки, то здесь используется только один вид селективности – времятоковый. В зоне короткого замыкания видов селективности может быть больше.

  • Токовая.
  • Временная.
  • Энергетическая.
  • Зонная.

Времятоковая характеристика определяет работу двух последовательно установленных выключателей, при которой время срабатывания первого, стоящего на нагрузке, быстрее, чем второго, стоящего на питании.

Внимание! Чем больше сила тока при перегрузке, тем быстрее срабатывает защитное устройство.

Поэтому при выборе автоматических выключателей для электрической сети, необходимо учитывать их пороги: по времени и по силе тока (номиналу). При этом выключатель со стороны нагрузки всегда должен срабатывать быстрее, чем выключатель (селективное УЗО) со стороны питания.

Токовая селективность основана на величине определяемого напряжения. Известно, что чем ближе к источнику короткого замыкания, тем сверхток на этом участке больше, а, значит, выше напряжение. Установив автоматические выключатели по участкам, можно легко определить, на каком из них произошло короткое замыкание.

Временная селективность – это качественное продолжение токовой селективности. Здесь также определяется защита по току, но добавляется и временной диапазон. При этом защитное устройство при коротком замыкании срабатывает не сразу, а только после определенного времени задержки. Для чего это необходимо? Цель – дать возможность сработать защитным устройствам на прилежащих участках, чтобы отключить область короткого замыкания от них.

Энергетическая селективность является специфичной. Она характеризуется токоограничивающими показателями. Поэтому в электрических сетях используются так называемые автоматические выключатели в литом корпусе, у которых время срабатывания отключения определяется тысячными долями секунды. То есть, они срабатывают настолько быстро, что ток короткого замыкания не успевает достичь своего максимального показателя.

Зонная селективность работает по принципу диалога между токоизмерительными устройствами, которые, обнаружив порог превышения параметров тока, тут же отключают зону неисправности. Самое главное, что защитное устройство точно определяет зону отключения. По сути, это временная селективность, только с более быстрым отключением сети.

Заключение по теме

В бытовых электрических сетях обычно используют селективность токовую и временную. Оптимальный для этого вариант – установить устройства защитного отключения последовательно по схеме древовидного распределения, то есть один общий выключатель и несколько на каждом шлейфе (контуре). Кстати, такую схему можно использовать и в межэтажной схеме, где выключатели (УЗО) устанавливаются на каждом этаже.

Селективность защиты электрической сети (принцип работы)

В электрике и энергетической отрасли селективность относится к важнейшим понятиям, так как основное ее назначение — защита от выхода из строя электроприборов по причине каких-либо неисправностей при функционировании электроустановок. Благодаря такой функции продляется срок службы приборов, повышается надежность их работы.

Что такое селективность?

Понимание селективности представляет собой отлаженное функционирование и механизм защиты определенного оборудования, состоящего из последовательно соединенных элементов. К подобным устройствам часто относятся разнообразные типы УЗО, дифавтоматов, предохранителей. Итог их работы — недопущение перегорания электрических механизмов при возникновении каких-либо предпосылок для этого. Читайте также статью ⇒ Принцип селективности для выбора автоматических выключателей и УЗО.

Читать еще:  Автоматический выключатель 1п 10а easy9

Схема совместной селективной работы УЗО и автоматических выключателей в щитке

Основным преимуществом такой системы можно назвать возможность отключения только неисправных участков, при которой оставшаяся часть системы продолжает работать.

Совет №1: Единственным необходимым условием в таком случае является согласованность между собой всех имеющихся устройств.

Функции селективности

К основным функциям селективности относятся:

  • обеспечение условий безопасности электрооборудования и работающих с ним сотрудников;
  • мгновенное выявление и отключение от питания зон, в которых возникла неисправность без отключения подачи питания в зоны исправной работы электротехники;
  • минимизация влияния отрицательных последствий неисправности на работающие в нормальном режиме части оборудования;
  • снижение нагрузки на состоящие из нескольких частей установки, предотвращение возникновения повреждений в аварийной части системы;
  • гарантирование максимально продолжительного электроснабжения требуемого качества;
  • обеспечение непрерывности выполнения процесса функционирования;
  • выполнение необходимого уровня поддержки при неисправности защиты, работающей на размыкание;
  • выполнение поддержки наиболее приемлемого режима работы агрегатов;
  • обеспечение рационального и простого использования, экономически рациональной работы установок.

Виды защиты

Временная

В цепь подключается ряда автоматов, обладающих различной выдержкой по времени, но идентичными токовыми параметрами. В итоге приборы подстраховывают один другого от ближайшего к неисправной зоне до наиболее удаленного устройства. К примеру, сработка ближайшего произойдет спустя 0,02 с, последующего — через 0,5 с, последнего, если не произойдет сработки предыдущих- спустя 1 с.

Принципиальная схема для выбора автоматических выключателей и УЗО по времени срабатывания

Про типы УЗО и его подключение подробно описано в статьях:

  • Какие типы УЗО существуют и в чем их различие?
  • Как правильно подключить УЗО? Схема подключения

По току

Принцип работы такого типа селективности одинаков с предыдущим, за исключением выдержки, происходящей по значению тока, а не по скорости сработки. Например, выключатели установлены на вводе 25А, затем на 16А, а после — на 10А. Срок сработки у всех приборов может быть равным.

Принципиальна схема подбора автоматических выключателей и УЗО по току срабатывания

По зонам

При определении нарушения диапазона тока сработка прибора позволяет с наиболее возможной точностью выявить аварийную зону и прекратить ее питание.

Принцип логики

Такой тип селективности в сети организуется обмен данными между подключенными к сети по последовательной схеме защитными приборами со значительным количеством порогов избирательности. При этом появляется возможность изменения задержки срока срабатывания любой из защит.

Принцип действия схемы логической селективности позволяет выбрать требуемый отключающий автомат

В итоге происходит сработка именно тех защитных приборов, которые располагаются близко от поставщиков электропитания, а близкие к оборудованию не подключаются. Это позволяет сделать выбор в пользу автомата, отключающего подачу аварийного тока.

По направленности

Включение приборов защиты осуществляется по очереди, формируемой направленностью тока. С помощью вектора напряжения задается некая точка, по отношению к которой сам вектор обладает фазовым сдвигом. Реле при этом реагирует и на напряжение, и на поступающий ток. Подлежащая защите цепь приспосабливается к размещению как в отключаемой зоне, так и на участке, на котором не производится отключение.

Включение устройств УЗО и выключателей, реализуемое по принципу направленности селективной защиты

При возникновении короткого замыкания в точке 1 устройство защиты D1 и выключатель, управляющийся им, среагируют, и будет произведено отключение. Сработки других приборов в этом случае не осуществится.

При возникновении короткого замыкания во 2-й точке обе защиты и выключатель не сработают.

Совет №2: Сборные шины оснащаются индивидуальной защитой.

Преимуществом такой схемы можно назвать простоту устройства. К недостатку следует отнести необходимость установки вспомогательного оборудования — трансформаторов напряжения, требующихся для выявления направленности тока.

По принципу дифференцирования

Такой тип селективности свойственен цепям с подключением мощных потребителей.

Отступления параметров токов по фазе и амплитуде в пунктах А и В будут определяться как аварийные. При нештатном событии за границами зоны АВ не фиксируются. Защита сработает при условии превышения величиной тока IA величины тока IB. Для реализации такого принципа требуется установка трансформаторов тока особых типов, позволяющих выстроить надежную защиту от процессов, оказывающих воздействие на сработку приборов:

  • намагничивающего тока трансформатора;
  • насыщения датчиков тока и образующегося тока погрешности;
  • емкостного элемента тока ЛЭП.

Принцип селективной дифференциальной защиты при подключении оборудования со значительной мощностью

Преимуществами такого метода являются:

  • высокий уровень чувствительности;
  • высокая скорость отключения в защищаемой зоне.

К минусам относятся:

  • немалая стоимость;
  • повышенные требования к сотрудникам, получивших доступ к работе с защитой;
  • необходимость обустройства наибольшей токовой защиты при возникновении нештатных событий.

Комбинированная селективность

Этот вид основывается на комбинировании селективности компонентов, входящих в ее состав. Такие комбинации позволяют выполнить значительные улучшения:

  • суммарной селективности;
  • аварийного режима либо резервирования.

Варианты применения комбинированной селективности:

  • по времени и току;
  • логическая плюс временная;
  • направленная и логическая;
  • направленная с временной;
  • временная совместно с направленной.

Карта селективности

Нельзя не упомянуть и селективной карте, требующейся для обеспечения максимальной токовой защиты. Карта выглядит как построенная в осях схема, на которой показаны все совокупности времятоковых характеристик поставленных автоматов.

На карте селективности отображаются времятоковые характеристики установленных и подключенных защитных автоматов

Как уже было указано выше, каждый из приборов защиты должен подключаться поочередно.

Основные правила для построения карт:

  • защитные приборы должны исходить от одного напряжения;
  • масштаб подбирается с учетом видимости всех граничных точек;
  • должны указываться наименьшие и наибольшие показатели коротких замыканий во всех расчетных точках.

Селективные автоматы

Рассмотрим работу селективной защиты на примере автомата АВВ S750DR, в которых обеспечивается селективность автоматов за счет наличия дополнительного токового пути, не размыкающегося после сработки главного контакта при коротком замыкании.

При выключении расположенной ниже аварийной зоны селективной клеммой создается задержка по времени сработки. Основная клемма селективного автомата при этом под действием пружины возвращается в исходное положение. При продолжении поступления сверхтока тепловая защита и в главной, и во вспомогательной цепях отключается. Селективная пластина при этом продолжает препятствовать механизму размыкания — пружина не может обратно изолировать основную клемму.

Ограничение автомата по току обеспечивается наличием селективного резистора на 0,5 Ом и значительного дугового сопротивления внутри самого устройства.

Релейная защита

К релейной защите, отключающей цепь при повреждениях, предъявляются такие требования:

  • селективность;
  • скорость реагирования;
  • чувствительность;
  • надежность.

Селективность можно назвать главным условием, обеспечивающим бесперебойность и непрерывность питания электрооборудования при наличии запасного источника.

Использование выключателей и реле с высокой скоростью реагирования исключается нарушение динамической устойчивости функционирующих параллельно синхронных агрегатов. Так устраняется основная причина самых тяжелых системных аварий с точки зрения непрерывной работы потребителей.

Релейная защита также должна обладать достаточной чувствительностью к повреждениям и нештатным режимам функционирования, возникающих на подлежащих защите элементах системы. Соответствия требованию необходимого уровня чувствительности во вновь создаваемых современных электросетях добиться очень сложно.

Требование надежности предъявляется в связи с тем, что защита сети должна безотказно и корректно функционировать и отключать оборудование при любом его повреждении и возникновении нарушений, препятствующих нормальному рабочему режиму.

Селективность между модульными автоматическими выключателями

Селективность между модульными автоматическими выключателями

Что общего у крупного центра обработки данных и небольшой серверной, у морской нефтяной платформы и энергодиспетчерского пункта на железной дороге, у городской поликлиники и банка? Все эти объекты относятся к потребителям I и особой категории электроснабжения и поэтому должны отвечать самым высоким требованиям к уровню электрической стабильности.
Достичь бесперебойной и качественной работы энергоустановок информационных систем, сервисов безопасности и контроля доступа и пр. можно только при условии реализации полной селективности на всех уровнях распределения. Данное утверждение в особенности касается модульных автоматических выключателей в низковольтных распределительных щитах.

Для чего нужна селективность

Во время перегрузки или короткого замыкания на линии электросети автоматический предохранитель должен среагировать. В то же время необходимо, чтобы минимальная часть потребителей была отключена, а другие продолжали функционировать. Если селективность установлена грамотно, должен функционировать только аварийный предохранитель линии, а групповой предохранитель должен оставаться работающим.

Селективность автоматов

Следовательно, селективность автоматических предохранителей — это выбор устройств в системе, в которых в случае аварии в любой ее части отключение выполнялось элементом, отвечающим только за эту часть. Проще говоря, селективность — это координация функционирования приборов защиты, подключенных последовательно, так что в случае скачков напряжения или короткого замыкания отключается только та часть установки, в которой происходит неисправность.

1.3.2 Таблицы каскадного соединения

В разделе «Дополнительная техническая информация» для сетей 220/240 В и 400/415 В приводятся таблицы каскадного соединения согласно МЭК 60947&2:

Читать еще:  Розетка с выключателем блокировкой

— между выключателями Multi 9;

— между выключателями Compact NS, Masterpact и Multi 9, и т.д.

В случае, если аппараты используются в однофазной сети TN, применяются таблицы 220/240 В.

Примечание: таблицы каскадного соединения даны для систем заземления TT и TN. Эти таблицы не применимы для сетей с изолированной нейтралью IT.

Несколько параллельно работающих трансформаторов

В этом случае необходимо пользоваться специальными таблицами, в которых даны типы автоматических выключателей для случая 2 или 3 параллельно работающих трансформаторов.

Эти таблицы составлены при следующих допущениях:

— мощность КЗ составляет 500 МВА;

— силовые трансформаторы имеют стандартное Uк;

— при расчете токов КЗ на сборных шинах не учитывались переходные сопротивления соединений (наиболее неблагоприятный случай);

— условия параллельного включения трансформаторов выполняются, т.е. трансформаторы имеют:

— одинаковый коэффициент трансформации.

Ток КЗ дается приближенно, т.е. для оценки. Его значение может быть другим в зависимости от Uk (%). Соответственно, значения отключающей способности, «усиленной» при каскадном соединении аппаратов, даны для больших значений Uк.

Карта селективности автоматических выключателей

Чтобы создать надежную токовую защиту, используют специальную карту. Она представляет собой схему времятоковых характеристик устройств, которые монтируются поочередно в электрической цепи. Часто карта селективности не применяется, что в будущем, возможно, приведет к отключению электроэнергии у потребителя.

Практика показывает, что такая карта нужна не всегда. Она применяется в случае возникновения серьезных повреждений. Для обеспечения избирательности (см. начало статьи) показатель соотношения номиналов должен быть от 2.5. Если при расчетах получается завышенное значение, то устанавливают рубильники или же селективный автоматический выключатель, такой как вводной автомат ABB S750DR.

Расчёт селективности

Чаще всего защитными устройствами выступают обыкновенные автоматические выключатели. Их селективность обеспечивается с помощью верного выбора и настроек параметров. Принцип работы таких выключателей обусловлен выполнением следующего условия:

  • Iс.о.послед ≥ Kн.о.* I к.пред., где:
    • — Iс.о.послед — ток, при котором вступает в действие защита;
    • — I к.пред. — ток короткого замыкания в конце зоны действия защиты;
    • — Kн.о. — коэффициент надёжности, зависящий от параметров.

Определить селективность при управлении аппаратов по времени можно при помощи следующей формулы:

  • tс.о.послед ≥ tк.пред.+ ∆t, где:
    • — tс.о.послед и tк.пред. — временные интервалы, через которые срабатывают отсечки автоматов, в зависимости от близости к источнику питания;
    • — ∆t — временная ступень селективности.
  • Ток перегруза — параметр, который незначительно отличается от номинального тока . Он может иметь кратковременный характер, поэтому в мгновенном отключении нет нужды — процесс происходит с задержкой . Д ля каждой цепи может устанавливаться свой допустимый параметр перегрузки (иногда их несколько).
  • Ток КЗ — параметр, который в десятки, а то и в сотни раз превышает номинальный ток . Как следствие, расцепитель автомата быстро диагностирует КЗ и производит отключение. Важный момент — время отключение, которое должно быть минимальным (как правило, оно исчисляются долями секунд). Чем быстрей отключится поврежденный участок, тем ниже риски повреждения про водов и электроприемников .

В теории для каждого их токов может быть вычислено индивидуальное время отключения, имеющее разную величину (от 1-2 секунд до 10-15 минут и более ). С другой стороны, ложная работа должна быть исключена. Если протекающий в цепи ток не несет риска для проводников и электроприборов, то в его отключении нет необходимости.

Это значит, что при установке тока перегрузки должна быть учтена реальная нагрузка защищаемой цепи. Не менее важный момент — проверка защиты перед подключением на факт точного определения тока и времени срабатывания.

Автоматические выключатели имею т три типа расцепителей :

  1. Механический — подразумевает ручное отключение и включение устройства.
  2. Электромагнитный — расцепитель , позволяющий быстро отключать токи КЗ.
  3. Тепловой — наиболее сложное устройство, обеспечив ающее защиту от тока перегруза.

При выборе АВ уделяется внимание двум пок азателям — параметрам соленоида и теплового расцепителя . Определяются они по буквенному обозначению, нанесенному на автомате . Маркировка выполнена в виде латинской буквы, прописанной перед цифрой, отражающей номинал ьный ток устройства.

Характеристики срабатывания защитных автоматических выключателей

Класс АВ, определяющийся этим параметром, обозначается латинским литером и проставляется на корпусной части автомата перед цифрой, соответствующей номинальному току.

В соответствии с классификацией, установленной ПУЭ, защитные автоматы подразделяются на несколько категорий.

Автоматы типа МА

Отличительная черта таких устройств – отсутствие в них теплового расцепителя. Аппараты этого класса устанавливают в цепях подключения электрических моторов и других мощных агрегатов.

Защиту от перегрузок в таких линиях обеспечивает реле максимального тока, автоматический выключатель только предохраняет сеть от повреждений в результате воздействия сверхтоков короткого замыкания.

Приборы класса А

Автоматы типа А, как было сказано, обладают самой высокой чувствительностью. Тепловой расцепитель в устройствах с времятоковой характеристикой А чаще всего срабатывает при превышении силой тока номинала АВ на 30%.

Катушка электромагнитного расцепления обесточивает сеть в течение примерно 0,05 сек, если электроток в цепи превышает номинальный на 100%. Если по какой-либо причине после увеличения силы потока электронов в два раза электромагнитный соленоид не сработал, биметаллический расцепитель отключает питание в течение 20 – 30 сек.

Автоматы, имеющие времятоковую характеристику А, включаются в линии, при работе которых недопустимы даже кратковременные перегрузки. К таковым относятся цепи с включенными в них полупроводниковыми элементами.

Защитные устройства класса B

Аппараты категории B обладают меньшей чувствительностью, чем относящиеся к типу A. Электромагнитный расцепитель в них срабатывает при превышении номинального тока на 200%, а время на срабатывание составляет 0,015 сек. Срабатывание биметаллической пластины в размыкателе с характеристикой B при аналогичном превышении номинала АВ занимает 4-5 сек.

Оборудование этого типа предназначено для установки в линиях, в которые включены розетки, приборы освещения и в других цепях, где пусковое повышение электротока отсутствует либо имеет минимальное значение.

Автоматы категории C

Устройства типа C наиболее распространены в бытовых сетях. Их перегрузочная способность еще выше, чем у ранее описанных. Для того, чтобы произошло срабатывание соленоида электромагнитного расцепления, установленного в таком приборе, нужно, чтобы проходящий через него поток электронов превысил номинальную величину в 5 раз. Срабатывание теплового расцепителя при пятикратном превышении номинала аппарата защиты происходит через 1,5 сек.

Установка автоматических выключателей с времятоковой характеристикой C, как мы и говорили, обычно производится в бытовых сетях. Они отлично справляются с ролью вводных устройств для защиты общей сети, в то время как для отдельных веток, к которым подключены группы розеток и осветительные приборы, хорошо подходят аппараты категории B.

Это позволит соблюсти селективность защитных автоматов (избирательность), и при КЗ в одной из веток не будет происходить обесточивания всего дома.

Автоматические выключатели категории Д

Эти устройства имеют наиболее высокую перегрузочную способность. Для срабатывания электромагнитной катушки, установленной в аппарате такого типа, нужно, чтобы номинал по электротоку защитного автомата был превышен как минимум в 10 раз.

Срабатывание теплового расцепителя в этом случае происходит через 0,4 сек.

Устройства с характеристикой D наиболее часто используются в общих сетях зданий и сооружений, где они играют подстраховочную роль. Их срабатывание происходит в том случае, если не произошло своевременного отключения электроэнергии автоматами защиты цепи в отдельных помещениях. Также их устанавливают в цепях с большой величиной пусковых токов, к которым подключены, например, электромоторы.

Защитные устройства категории K и Z

Автоматы этих типов распространены гораздо меньше, чем те, о которых было рассказано выше. Приборы типа K имеют большой разброс в величинах тока, необходимых для электромагнитного расцепления. Так, для цепи переменного тока этот показатель должен превышать номинальный в 12 раз, а для постоянного – в 18. Срабатывание электромагнитного соленоида происходит не более чем через 0,02 сек. Срабатывание теплового расцепителя в таком оборудовании может произойти при превышении величины номинального тока всего на 5%.

Этими особенностями обусловлено применение устройств типа K в цепях с исключительно индуктивной нагрузкой.

Приборы типа Z тоже имеют разные токи срабатывания соленоида электромагнитного расцепления, но разброс при этом не столь велик, как в АВ категории K. В цепях переменного тока для их отключения превышение токового номинала должно быть трехкратным, а в сетях постоянного – величина электротока должна быть в 4,5 раза больше номинальной.

Аппараты с характеристикой Z используются только в линиях, к которым подключены электронные устройства.

Наглядно про категории автоматов на видео:

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector