Ivalt.ru

И-Вольт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Руководство по эксплуатации выключателя ммо 110

Типовая инструкция по эксплуатации измерительных трансформаторов тока и напряжения 110 кВ и выше

Купить бумажный документ с голограммой и синими печатями. подробнее

Цена на этот документ пока неизвестна. Нажмите кнопку «Купить» и сделайте заказ, и мы пришлем вам цену.

Распространяем нормативную документацию с 1999 года. Пробиваем чеки, платим налоги, принимаем к оплате все законные формы платежей без дополнительных процентов. Наши клиенты защищены Законом. ООО «ЦНТИ Нормоконтроль»

Наши цены ниже, чем в других местах, потому что мы работаем напрямую с поставщиками документов.

Способы доставки

  • Срочная курьерская доставка (1-3 дня)
  • Курьерская доставка (7 дней)
  • Самовывоз из московского офиса
  • Почта РФ

Инструкция предназначена для применения энергетическими предприятиями эксплуатирующими данный вид оборудования и может служить основой для разработки местных инструкций

Оглавление

1. Классификация измерительных трансформаторов

2. Основные параметры измерительных трансформаторов

3. Метрологические характеристики

4. Обозначение выводов обмоток

5. Транспортировка и хранение

6. Ввод в эксплуатацию новых измерительных трансформаторов и измерительных трансформаторов, прошедших восстановительный или капитальный ремонт

7. Обслуживание измерительных трансформаторов

8. Действия персонала при обнаружении неисправностей

9. Особенности конструкции и эксплуатации некоторых типов измерительных трансформаторов

10. Список литературы

Приложение А Методика измерения сопротивления изоляции трансформаторов тока

Приложение Б Методика измерения тангенса угла диэлектрических потерь и емкости трансформаторов тока

Приложение В Методика измерения сопротивления обмоток постоянному току для измерительных трансформаторов

Приложение Г Методика снятия характеристик намагничивания трансформаторов тока

Приложение Д Методика проверки полярности выводов трансформаторов тока и напряжения

Приложение Е Методика измерения коэффициента трансформации трансформаторов тока

Приложение Ж Методика проверки качества уплотнений трансформаторов тока и напряжения

Приложение З Методика испытания трансформаторов тока типа ТФНКД-330 кВ и ТФРМ 330-750 кВ в эксплуатации для оценки влагосодержания твердой изоляции

Приложение И Методика измерения сопротивления изоляции трансформаторов напряжения

Приложение К Методика измерения тока холостого хода трансформаторов напряжения

Приложение Л Методика измерения коэффициента трансформации трансформатора напряжения

Приложение М Методика размагничивания трансформатора тока

Приложение Н Паспорт-протокол трансформатора тока

Приложение О Паспорт-протокол трансформатора напряжения и его вторичных цепей

Приложение П Термины, определения, обозначения, сокращения

Дата введения01.02.2020
Добавлен в базу01.01.2018
Актуализация01.02.2020

Этот документ находится в:

  • Раздел Строительство
    • Раздел Нормативные документы
      • Раздел Отраслевые и ведомственные нормативно-методические документы
        • Раздел Проектирование и строительство объектов энергетического комплекса
  • Раздел Экология
    • Раздел 27 ЭНЕРГЕТИКА И ТЕПЛОТЕХНИКА
      • Раздел 27.010 Энергетика и теплотехника в целом

Организации:

09.06.2008УтвержденОАО РАО ЕЭС России
РазработанОАО СО ЕЭС
РазработанВНИИЭ (Филиал ОАО НТЦ электроэнергетики
РазработанИГЭУ (Ивановский государственный энергетический университет)
ИзданЗАО Энергетические технологии2008 г.
  • СТО 17330282.29.240.004-2008Правила предотвращения развития и ликвидации нарушений нормального режима электрической части энергосистем
  • РД 153-34.0-35.301-02Инструкция по проверке трансформаторов тока, используемых в схемах релейной защиты и измерения
  • ГОСТ 7746-2001Трансформаторы тока. Общие технические условия. Заменен на ГОСТ 7746-2015.
  • ГОСТ 1983-2001Трансформаторы напряжения. Общие технические условия. Заменен на ГОСТ 1983-2015.
  • РД 34.20.517-87Методические указания по предотвращению феррорезонанса в распределительных устройствах 110 — 500 кВ с электромагнитными трансформаторами напряжения и выключателями, содержащими емкостные делители напряжения
  • РД 34.35.305-79Инструкция по проверке трансформаторов напряжения и их вторичных цепей
  • ГОСТ 6581-75Материалы электроизоляционные жидкие. Методы электрических испытаний
  • ГОСТ 6370-83Нефть, нефтепродукты и присадки. Метод определения механических примесей. Заменен на ГОСТ 6370-2018.
  • ГОСТ 6307-75Нефтепродукты. Метод определения наличия водорастворимых кислот и щелочей
  • ГОСТ 5985-79Нефтепродукты. Метод определения кислотности и кислотного числа
  • ГОСТ 18685-73Трансформаторы тока и напряжения. Термины и определения
  • ГОСТ 17216-71Промышленная чистота. Классы чистоты жидкостей. Заменен на ГОСТ 17216-2001.
  • ГОСТ 1547-84Масла и смазки. Методы определения наличия воды
  • РД 34.43.107-95Методические указания по определению содержания воды и воздуха в трансформаторном масле
  • РД 34.45-51.300-97Объем и нормы испытаний электрооборудования
  • ГОСТ 6356-75Нефтепродукты. Метод определения температуры вспышки в закрытом тигле
  • Показать все

Чтобы бесплатно скачать этот документ в формате PDF, поддержите наш сайт и нажмите кнопку:

  • Сканы страниц документа
  • Текст документа

РОССИЙСКОЕ ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО ЭНЕРГЕТИКИ И ЭЛЕКТРИФИКАЦИИ «ЕЭС РОССИИ»

ТИПОВАЯ ИНСТРУКЦИЯ

по эксплуатации измерительных трансформаторов тока и напряжении 110кВ и выше

РОССИЙСКОЕ ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО ЭНЕРГЕТИКИ И ЭЛЕКТРИФИКАЦИИ «ЕЭС РОССИИ»

ТИПОВАЯ ИНСТРУКЦИЯ

по эксплуатации измерительных трансформаторов тока и напряжения 110 кВ и выше

ЗАО «ЭНЕРГЕТИЧЕСКИЕ ТЕХНОЛОГИИ» МОСКВА 2008

6.2. Трансформаторы тока.

При вводе в эксплуатацию масляные ТТ должны пройти проверку, которая включает в себя:

— проверку уровня масла;

— измерение пробивного напряжения масла по ГОСТ 6581-75 [5],

РД 34.45-51.300-97 [4];

— измерение tg5 масла при 20°С, 70°С и 90°С по ГОСТ 6581-75 [5], РД 34.45-51.300-97 [41;

— измерение влажности масла по РД 34.43.107-95, ГОСТ 1547-84 [6], РД 34.45-51.300-97 [4];

— измерение сопротивления главной изоляции и изоляции вторичных обмоток (мегаомметром на 2,5 и 1,0 кВ соответственно) в соответствии с РД 34.45-51.300-97 [4J, приложение А;

— измерение tg6 главной изоляции при напряжении 10 кВ в соответствии с РД 34.45-51.300-97 [4), приложение Б;

— измерение сопротивления обмоток постоянному току в соответствии с РД 34.45-51.300-97 [4], приложение В;

— проверку полярности первичных и вторичных обмоток в соответствии с [1], приложение Д;

— снятие кривой намагничивания каждой вторичной обмотки в соответствии с [1] и РД 34.45-51.300-97 [4], приложение Г;

— измерение коэффициента трансформации в соответствии с [1] и РД 34.45-51.300-97 [4], приложение Е.

Для ТТ с элегазовой и твердой изоляцией, а также импортных ТТ подготовку при вводе в эксплуатацию производят согласно заводскому руководству.

Из г ерметичных и импортных ТТ взятие проб масла производится по согласованию с заводом-изготовнтелем.

6.3. Трансформаторы напряжения.

При вводе в эксплуагацию масляные ТН должны пройти проверку, которая включает в себя:

— проверку уровня масла;

— измерение пробивного напряжения масла по ГОСТ 6581-75 [5], РД 34.45-51.300-97 [4];

— измерение влажности масла по РД 34.43.107-95, ГОСТ 1547-84 [6], РД 34.45-51.300-97 [4];

— измерение tg 5 масла при 20°С, 70°С и 90°С по ГОСТ 6581-75 [5], РД 34.45-51.300-97 [4];

— измерение сопротиатения изоляции первичной обмотки и каждой вторичной обмотки относительно корпуса и других обмоток (мсгаом-метром 2,5 и 1,0 кВ) в соответствии с РД 34.45-51.300-97; [4], приложение И;

— измерение сопротивления обмоток постоянному току в соответствии с РД 34.45-51.300-97; [4], приложение В;

— измерение тока и потерь холостого хода при номинальном напряжении каждой ступени в соответствии с РД 34.45-51.300-97; [4], приложение К;

— проверку полярности первичных и вторичных обмоток в соответствии с [2] и РД 34.45-51.300-97 [4], приложение Д;

Читать еще:  Стойка для ящика с выключателем

— измерение коэффициента трансформации каждой ступени в отдельности в соответствии с [2] и РД 34.45-51.300-97 [4], приложение Л;

— определение потери напряжения от ТН до нагрузки включая защитный автомат в соответствии с [2];

— определение нагрузки на каждую из обмоток трансформаторов напряжения в соответствии с [2].

Для емкостных ТН и ТН с элегазовой и твердой изоляцией, а также импортных ТН подготовку при вводе в эксплуатацию проводить по рекомендации завода-изготовителя.

Из гермегичных и импортных ТТ взятие проб масла производится по согласованию с заводом-изготовителем.

6.4. При вводе измерительных трансформаторов в работу и в процессе эксплуатации следует руководствоваться гребованиями Норм РД 34.45-51.3(Х)-97 [4]. Наряду с Нормами следует руководствоваться действующими руководящими документами, а также инструкциями заводов-изготовителей электрооборудования, если они не противоречат требованиям Норм. Результаты измерений заносятся в протокол и сравниваются с заводскими данными. После их сопоставления принимается решение о возможности монтажа.

6.5. После принятия решения о вводе в эксплуатацию:

— установить демонтированные на время транспортировки отдельные съемные части измерительного трансформатора;

— установить трансформатор на фундаменте согласно заводской инструкции с проверкой вертикальности (каждую ступень отдельно);

— закрепить анкерные болты и подключить заземление к специальному болту, имеющемуся на основании. Заземление только через анкерные болты не допускается;

— подсоединить первичную обмотку так, чтобы ее выводы не испытывали изгибающих усилий от подводящих проводов;

— подключить вторичные цепи и, при необходимости, запломбировать клеммную коробку.

6.6. Завести на каждый трансформатор эксплуатационную документацию, в частности регистрационную каргу, куда регулярно заносятся результаты профилактических работ, обследований и испытаний в течение всего срока службы трансформатора. Иметь техническое описание, инструкцию по эксплуатации и паспорт завода-изготовителя. Формуляры эксплуатационной документации в соответствии с [1], [2] даны в приложениях Н и О.

6.7. После ввода в эксплуатацию многоступенчатою электромагнитного трансформатора напряжения следует проверить не только правильность подсоединения начал и концов уравнительных обмоток между ступенями, но и коэффициент трансформации всего ТН в сборе. Для этого достаточно подать на первичную обмотку напряжение 220 В частоты 50 Гц, а напряжение вторичных обмоток измерить милливольтметром.

7. Обслуживание измерительных трансформаторов.

7.1. В течение первою года эксплуатации.

В течение первого года эксплуатации у трансформатора могут проявляться дефекты, не замеченные на заводе-изготовителе и при вводе трансформатора в эксплуатацию.

Объем необходимых испытаний такой же, как и при вводе трансформатора в эксплуатацию.

Испытания следует проводить через 1 год после включения.

7.2. В течение всего срока службы.

Обслуживание измерительного трансформатора производится в соответствии с РД 34.45-51.300-97 [4] и инструкцией завода-изготовителя.

При сроках эксплуатации, превышающих нормативные, с учетом динамики изменения параметров, характеризующих состояние изоляции и механическое состояние, периодичность испытаний ТТ и ТН должна быть изменена (вплоть до ежегодной).

Перечень контролируемых показателей трансформаторов тока, электромагнитных и емкостных трансформаторов напряжения согласно РД 34.45-51.300-97 [4] приведен в таблицах 5-7.

Элегазовые выключатели 110 кВ и выше

Высоковольтные выключатели, в которых используется элегаз SF6 как изоляционная и дугогасительная среда, получают все более широкое распространение, так как имеют высокие показатели коммутационного и механического ресурсов, отключающей способности, компактности и надежности по сравнению с воздушными, масляными и маломасляными высоковольтными выключателями.

Успехи в разработках элегазовых выключтаелей непосредственно оказали значительное влияние на внедрение в эксплуатацию компактных ОРУ, ЗРУ и элегазовых КРУЭ. В элегазовых выключателях применяются различные способы гашения дуги в зависимости от номинального напряжения, номинального тока отключения и характеристик энергосистемы (или отдельной электроустановки).

В элегазовых дугогасительных устройствах , в отличие от воздушных дугогасительных устройств, при гашении дуги истечение газа через сопло происходит не в атмосферу, а в замкнутый объем камеры, заполненный элегазом при относительно небольшом избыточном давлении.

По способу гашения электрической дуги при отключении различают следующие элегазовые выключатели:

1. Автокомпрессионный элегазовый выключатель, где необходимый массовый расход элегаза через сопла компрессионного дугогасительного устройства создается по ходу подвижной системы выключателя (автокомпрессионный выключатель с одной ступенью давления).

2. Элегазовый выключатель с электромагнитным дутьем, в котором гашение дуги в дугогасительном устройстве обеспечивается вращением ее по кольцевым контактам под действием магнитного поля, создаваемого отключаемым током.

3. Элегазовый выключатель с камерами высокого и низкого давления, в котором принцип обеспечения газового дутья через сопла в дугогасительном устройстве аналогичен воздушным дугогасительным устройствам (Элегазовый выключатель с двумя ступенями давления).

4. Автогенерирующий элегазовый выключатель, где необходимый массовый расход элегаза через сопла дугогасительного устройства создается за счет разогрева и повышения давления элегаза дугой отключения в специальной камере (автогенерирующий элегазовый выключатель с одной ступенью давления).

Рассмотрим некоторые типичные конструкции элегазовых выключателей на 110 кВ и выше.

Элегазовые выключатели 110 кВ и выше на один разрыв различных фирм имеют следующие номинальные параметры: Uном=110-330 кВ, Iном=1-8 кА, Iо.ном=25-63 кА, давление элегаза рном=0,45-0,7 МПа(абс), время отключения 2-3 периода тока КЗ. Интенсивные исследования и испытания отечественных и зарубежных фирм позволили разработать и внедрить в эксплуатацию элегазовый выключатель с одним разрывом на Uном = 330-550 кВ при Iо.ном= 40 — 50 кА и времени отключения тока один период тока КЗ.

Типичная конструкция автокомпрессионного элегазового выключателя приведена на рис. 1.

Аппарат находится в отключенном положении и контакты 5 и 3 разомкнуты.

Токоподвод к неподвижному контакту 3 осуществляется через фланец 2, а к подвижному контакту 5 через фланец 9. В верхней крышке 1 монтируется камера с адсорбентом. Опорная изоляционная конструкция элегазового выключателя закреплена на подножнике 11. При включении выключателя срабатывает пневмопривод 13, шток 12 которого соединен через изоляционную тягу 10 и стальной стержень 8 с подвижным контакт 5. Последний жестко связан с фторопластовым соплом 4 и подвижным цилиндром 6. Вся подвижная система ЭВ (элементы 12-10-8-6-5) движется вверх относительно неподвижного поршня 7, и полость К дугогасительной системы выключателя увеличивается.

При отключении выключателя шток 12 приводного силового механизма тянет подвижную систему вниз и в полости К создается повышенное давление по сравнению с давлением в камере выключателя. Такая автокомпрессия элегаза обеспечивает истечение газовой среды через сопло, интенсивное охлаждение электрической дуги, возникающей между контактами 3 и 5 при отключении. Указатель положения 14 дает возможность визуального контроля исходного положения контактной системы выключателя. В ряде конструкций автокомпрессионных элегазовых выключателей используются пружинные, гидравлические силовые приводные механизмы, а истечение элегаза через сопла в дугогасительной камере осуществляется по принципу двухстороннего дутья.

На рис. 2 приведен баковый элегазовый выключатель типа ВГБУ 220 кВ (Iном=2500 А, Iо.ном=40 кА ОАО «НИИВА» с автономным гидравлическим приводом 5 и встроенными трансформаторами тока 2. ЭВ имеет трехфазное управление (один привод на три фазы) и снабжен фарфоровыми (полимерными) покрышками 1 вводов «воздух-элегаз».

Читать еще:  Конечный выключатель впу 011

В газонаполненном баке 3 находится дугогасительное устройство, которое соединено с гидроприводом 5 через передаточный механизм размещенный в газонаполненной камере 4. Конструкция бакового элегазового выключателя закреплена на металлической раме 6. Для заполнения элегазом выключателя используется разъем 7. При установке выключателя в ОРУ обычно давление элегаза в камерах равно одной атм(абс.) и далее необходимо обеспечить р = рном.

Преимуществами баковых элегазовых выключателей со встроенными трансформаторами тока перед комплектами «колонковый элегазовый выключатель плюс отдельно стоящий трансформатор тока» являются: повышенная сейсмостойкость, меньшая площадь отчуждаемой территории подстанции, меньший объем требуемых фундаментных работ при строительстве подстанций, повышенная безопасность персонала подстанции (дугогасительные устройства расположены в заземленных металлических резервуарах), возможность применения подогрева элегаза при использовании в районах с холодным климатом.

В конструкциях баковых выключателей 220 кВ и выше для ОРУ необходимо повышение номинального давления элегаза (рном > 4,5атм(абс.)), поэтому вводят подогрев газовой среды с целью предотвращения сжижения элегаза при низких значениях температуры окружающей среды или используют смеси элегаза с азотом или тетрафторметаном.

Как показывает практика, для номинального напряжения 330–500 кВ баковые выключатели с одним разрывом на номинальные токи 40-63 кА — наиболее перспективный вид коммутационного оборудования для ОРУ и КРУЭ.

Выключатель ВГБ-750-50/4000 У1 разработки ОАО «НИИВА» (рис. 3) с двухразрывным автокомпрессионным дугогасительным устройством, встроенными трансформаторами тока, полимерными вводами «воздух-элегаз» снабжен двумя гидроприводами на полюс, что позволяет обеспечить полное время отключения не более длительности двух периодов тока промышленной частоты.

На рис. 4 изображен разрез дугогасительного устройства одного полуполюса ВГБ-750-50/4000У1 с предвключаемыми резисторами (для ограничения коммутационных перенапряжений). Подвижный контакт этих резисторов механически связан с подвижной системой выключателя.

Во включенном положении элегазового выключателя резисторы зашунтированы главными контактами. При отключении первыми размыкаются контакты резисторов, далее – главные, затем — дугогасительные контакты. При включении первыми замыкаются контакты резисторов, а затем – дугогасительные и главные контакты. Для выравнивания распределения напряжения каждый разрыв шунтирован конденсаторами.

Распространение получили колонковые элегазовые выключатели с одним разрывом на номинальное напряжение 110-220 кВ с номинальным током отключения 40-50 кА.

Типичная конструкция колонкового элегазового выключателя типа ВГП 110 кВ (Iном=2500 А, Iо.ном=40 кА) с пружинным приводом ОАО «Электроаппарат» приведена на рис. 5.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Элегазовые выключатели 110 кВ

1. Назначение и принцип работы

Элегазовый выключатель — это разновидность высоковольтного выключателя, коммутационный аппарат, использующий элегаз в качестве среды гашения электронной дуги; предназначенный для оперативных подключений и отключений индивидуальных цепей или электрооборудования в энергосистеме.

Рисунок 1 – Схема элегазового выключателя

Элегазовые выключатели начали усиленно разрабатываться с 1980 г. и имеют большие перспективы при напряжениях 110…1150 кВ и токах отключения до 80 кА. В технически развитых странах элегазовые выключатели высокого и сверхвысокого напряжения (110-1150 кВ) практически вытеснили все другие типы аппаратов.

Элегазовые выключатели высокого напряжения выполняют работу за счет изоляции фаз друг от друга посредством элегаза. Когда срабатывает уведомление о том, что нужно отключить электрооборудование, контакты некоторых камер (если аппарат колонковый) размыкаются. Таким способом, встроенные контакты образуют дугу, которая помещена в газовую среду. Она разлагает газ на разные компоненты, но при этом и сама уменьшается из-за высокого давления в емкости.

В процессе использования элегазового выключателя выполняются циклы подключения и отключения коммутационного аппарата. При различных дейсвий с выключателем в режимных целях, в большинстве случаев, ток отключения располагается в границах обозначенных значений. Количество потенциально возможных операций зависимо от тока отключения устанавливает изготовитель. Для того, найти суммарное число операций отключения, существенно нужно пользоваться особой диаграммой взаимосвязи, которую можно найти в паспорте выключателя. Чем больше ток, тем меньшее количество возможных циклов включения/отключения элегазового выключателя.
Выключатель специализирован для установки в ОРУ 110кВ, так как его номинальное рабочее напряжение – 126кВ. Выключатель делает работу в согласовании с заявленными производственным изготовителем при условиях:

  • установки на возвышенности над ярусом морского побережья не больше тысячи м-ов;
  • температуры окружающей среды от -350 С до +400 С;
  • установки в согласовании с необходимыми условиями завода-изготовителя;

Элегазовые выключатели различают

  • колонковые
  • баковые

2 Колонковые выключатели

Колонковый элегазовый выключатель – такое приспособление с автокомпрессией в положении удовлетворить подходящую коммутационную способность всех условиях переключения. Выключатель сделан в колонковом трёхполюсном выполнен с совместной рамой для полюсов и привода. Устройство оснащёно: аппаратом соблюдения порядка плотности элегаза с контактами для предупредительной сигнализации о понижении давления и воспрещения пользоваться выключателем, указателями местоположения «ON — OFF» выключателя и расположения пружин, счётчиком процедур вмешательства, предохранительными клапанами для сбрасывания лишнего давления, манометром соблюдения порядка давления в аппарате, платформами заземления. Шкаф управления имеет герметичную пыле — влагоустойчивую конструкцию с подогревом.

Рисунок 2 – Конструкция колонкового выключателя

3 Баковые выключатели

Элегазовые баковые выключатели – могут быть использованы на подстанциях ОРУ типа классов напряжения 35-220 кВ для осуществления коммутации переходных процессов в энергосистемах, т.е. претворения процедур подключения и отключения индивидуальных цепей при ручном либо автоматическом управлении. Они делаются в трёхполюсном либо однополюсном выполнении. Полюсы коммутационного аппарата, с одноразрывными дугогасительными устройствами и высоковольтными вводами, покрытой горячим цинком и поставлены на опорной раме. Управление данным аппаратом исполняется пружинным приводом. Выключатель в однополюсном выполнении (один пружинный привод на каждый полюс) имеет схему управления, которая дает возможность (с пульта управления) при поддержки электромагнитовоперировать 3 – мя полюсами единовременно либо всяким полюсом отдельно в зависимости от схемы блокировки, управления, сигнализации и релейной защиты.

Преимуществами баковых элегазовых выключателей со встроенными трансформаторами тока перед комплектными наборами «колонковый элегазовый выключатель плюс отдельно стоящий трансформатор тока» являются: повышенная сейсмостойкость, наименьшая площадь отчуждаемой местности территорий подстанции. Также наименьший объем запрашиваемых фундаментных трудовых функций при постройки подстанций, усиленная защищенность состава кадров подстанции (дугогасительные устройства расположены в заземленных металлических резервуарах), вероятность осуществления применения обогрева элегаза при использовании в областях с прохладным климатом.

4. Принцип гашения дуги

Успехи в разработках элегазовых выключтаелей откровенно оказали значительное воздействие на введение в эксплуатационную деятельность компактно размещенных на небольшой территории открытых распределительных устройствах размещенных на открытом воздухе, закрытых распределительных устройствах – размещенных в помещении и элегазовых комплектно распределительных устройствах. В элегазовых выключателях могут использоваться, разные методы гашения дуги зависимо от номинального напряжения, номинального тока отключения и объективных оценок энергосистемы (а также различных электроустановок).

Читать еще:  Приводы выключателей 110 220

В элегазовых дугогасительных устройствах , в сравнение от воздушных дугогасительных устройств, при гашении дуги истечение газа через сопло происходит не в воздушную среду, а в скрытный в себе объем камеры, наполненный элегазом при условно сравнительно маленьком лишнем давлении.

По методике гашения электрической дуги при выключении различают последующие элегазовые выключатели:

  • Автокомпрессионный элегазовый коммутационный аппарат , где существенно нужный крупно масштабный расход элегаза через сопла компрессионного дугогасительного устройства создается по ходу подвижной системы выключателя (автокомпрессионный выключатель с одной ступенью давления).
  • Элегазовый выключатель с электромагнитным дутьем, в котором гашение дуги в дугогасительном устройстве гарантируется вращением её по кольцевым контактам под воздействием магнитного поля, формируемого отключаемым током.
  • Элегазовый выключатель с камерами низкого и высокого давления, в каком принцип снабжения газового дутья через сопла в дугогасительном аппарате аналогичен воздушным дугогасительным устройствам (Элегазовый выключатель с 2 – мя ступенями давления).
  • Автогенерирующий элегазовый выключатель, где очень важный крупномасштабный расход элегаза через сопла дугогасительного устройства формируется за счет подогрева и увеличения давления элегаза дугой отключения в специально подготовленной камере (автогенерирующий элегазовый выключатель с одной ступенью давления).

5. Достоинства и недостатки

Учитывая вышеупомянутое, между плюсами выключателей элегазового типа можно отметить следующее:

  • возможность установки в электроустановках как закрытого, так и открытого выполнения буквально всех классов напряжения;
  • отмечается простота и надежность конструкции в эксплуатации;
  • высокая интенсивность скорости срабатывания;
  • низкие динамические нагрузки на фундаментные опоры;
  • неплохая отключающая способность;
  • небольшие габаритные пропорции и сумма веса;
  • наличие в приводе автоматического управления двух ступеней обогрева;
  • большой коммутационный ресурс контактной системы;

Недостатки элегазовых выключателей:

  • требуется более внимательное отношение к использованию и учету элегаза;
  • высокие необходимые условия к качеству элегаза;
  • необходимость специально подготовленных устройств для заполнения, перекачки и фильтрации элегаза;
  • относительно высокая стоимость элегаза;
  • сложность и накладность изготовления — при производственном изготовлении неизбежно нужно соблюдать высокоё качество аппарата;
  • дороговизна конструкции и второстепенных элементов;
  • при выводе из строя выключателя в режиме ЧП, починка данного аппарата может быть не актуальной.

6. Технические характеристики

В таблице приведены технические характеристики выключателей ВГТ — 110 кВ.

Таблица 5.1 – Основные технические данные выключателя ВГТ — 110 кВ

ПараметрДопустимое значение
Номинальное напряжение110 кВ
Время отключения0,035 с
Номинальный ток2500 А
Рабочее напряжение (максимальное)126 кВ
Максимальный ток отключения40 кА
Пауза при АПВ0,3 с
Ток КЗ (максимальный)100 кА
Время протекания тока КЗ3 с
Утечка элегаза за 12 месяцев0,8 %
Напряжение подогревательных устройств220 В
Тип приводаПружинный
Длина пути утечки270 см
Масса элегаза6,3 кг
Количество приводов1
Масса выключателя1700 кг
Срок до планового ремонта12 лет
Срок эксплуатации25 лет

Вывод:

выключатель использующий элегаз в качестве среды гашения электронной дуги, очень распространен на ОРУ и ЗРУ, без них не обходиться почти ни одна подстанции в мире. Их надежность и высокие технические характеристики дают понять, почему они так популярны в энергосистеме. В целом это оптимальный коммутационный аппарат в ценовой категории, и надежности по сравнению с воздушными, масляными и маломасляными высоковольтными выключателями.

Ссылки

1. ГОСТ 19431-84 «Энергетика и электрификация. Термины и определения»
2. Б.Н.Неклепаев «Электрическая часть электростанций и подстанций »; 2-е издание, переработанное и дополненное, 1980 г.

Выключатель ВМТ-110

Выключатель ВМТ-110

  • Главная
  • Масляные выключатели
  • Выключатель ВМТ-110

Поиск по каталогу

Каталог продукции

  • Масляные выключатели
  • Приводы выключателей
  • Полюса масляного выключателя
  • Распределительные устройства
  • Элегазовые выключатели
  • Трансформаторы
  • Высоковольтные вводы
  • Высоковольтные конденсаторы
  • Разъединители 35-110кв
  • ВЧ заградители 35-110 кВ
  • Комплектующие (ЗИП)

Вы недавно смотрели

Выключатель ВМТ-110

Выключатели маломасляные высоковольтные ВМТ-110б-25/1250 УХЛ1 и ВМТ-110б-40/2000 УХЛ1 предназначены для включения и отключения электрических цепей высокого напряжения под нагрузкой, а также для отключения токов короткого замыкания. Для управления выключателем на напряжение 110кВ с током отключения 25кА применяется привод ППРК-1400, для управления выключателем 110кВ с током отключения 40кА применяется привод ППРК-1800.

  • Описание
  • Характеристики
  • Документация
  • Видеообзор

Структура условного обозначения выключателя ВМТ-110б

пример: выключатель ВМТ-110б-25/1250 УХЛ1, ВМТ-110б-40/2000 УХЛ1

Т — конструктивное исполнение;

Х — номинальное напряжение, кВ (110 или 220)

Б — категория по длине пути утечки внешней изоляции по ГОСТ 9920-75 ( на 110 кВ— не менее 280 см, на 220 кВ — 570 см)

Х — номинальный ток отключения, кА (при частоте 50 Гц: 25 или 40; при частоте 60 Гц: 20 или 31,5);

Х — номинальный ток, А (при частоте 50 Гц: 1250 или 2000; при частоте 60 Гц: 1000 или 1600);

Х1—климатическое исполнение и категория размещения по ГОСТ 15150—69 и ГОСТ 15543—70 (УХЛ и Т).

Принцип работы выключателей ВМТ-110б-25/1250 и ВМТ-110б-40/2000

Принцип работы выключателей основан на гашении дуги потоком газо-масляной смеси, образующейся в результате интенсивного разложения трансформаторного масла под действием высокой температуры дуги. Этот поток получает определенное направление в дугогасительной камере, размещенной в зоне горения дуги. Включение выключателя осуществляется за счет энергии включающих пружин привода, а отключение за счет энергии собственных отключающих пружин выключателя, взведение которых происходит в процессе включения.

Устройство маломасляного выключателя ВМТ-110б

В основу конструкции выключателей положено одноразрывное дугогасительное устройство (модуль) на напряжение 110кВ.

В выключателях ВМТ-110Б с токами отключения 25кА и 40кА три полюса установлены на общей раме и управляются одним пружинным приводом ППрК.

Рама выключателя ВМТ-110Б представляет собой сварную конструкцию, на которой установлены привод ППрК и маслонаполненные колонны.

В полости одного из опорных швеллеров рамы, закрытой крышками, размещены отключающие пружины и последовательно соединенные тяги, связывающие рычаг привода с рычагами механизмов маслонаполненных колонн. В крышке выполнено смотровое окно планки-указателя положения выключателя.

Дугогасительное устройство состоит из дугогасительной камеры, неподвижного контакта, колпака, изолятора, токопровода с подвижным контактом. Камера помещена внутри установленного консольно на токоотводе стеклопластикового цилиндра, защищающего фарфор и корпусные детали от воздействия давления, возникающего при коммутации.

Подогревательное устройство, предназначенное для подогрева масла в колоннах при работе выключателя в условиях низких температур окружающей среды, размещено в нижней части корпуса механизма и представляет собой собранный из четырех стандартных трубчатых электронагревателей (ТЭН) блок подогрева, установленный внутри стакана, снабженного радиатором, защитным кожухом и устройством организации конвективного потока подогретого масла. Электрическая схема соединения нагревателей обеспечивает возможность включения блока подогрева двумя ступенями.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector