Ivalt.ru

И-Вольт
11 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

При авр секционного выключателя

Для чего нужен автоматический ввод резерва и как работает АВР

  • Назначение АВР
  • Как работает автоматический ввод резервного питания
  • Требования к системе
  • Классификация АВР и варианты реализации
  • Особенности работы с бытовыми генераторами
  • АВР на аккумуляторах
  • Применение логического контроллера
  • Организация АВР в высоковольтных цепях

Назначение АВР

Назначение данной системы в электрике схоже с организацией бесперебойного питания. Главная задача автоматического ввода резервного питания — это быстрое восстановление электроснабжения без участия в этом процессе человека. На больших подстанциях всегда имеется два ввода на две, разделённые секционным выключателем, секции распределительного устройства, работающие автономно друг от друга. Согласно ПУЭ (правила устройства электроустановок) автоматическое подключение резервного питания и снабжение на 2 ввода является обязательной мерой обеспечения электричеством потребителей первой категории.

Простой пример необходимости данной системы можно привести относительно освещения какого-то важного охраняемого участка. То есть при отключении основного ввода система сама включит питание от резервного источника, при этом данный важный участок останется осветлен. Максимум что может возникнуть — это непродолжительное прекращение питания, которое визуально даже отследить тяжело. Это зависит от скорости срабатывания АВР, время включения резерва должно составлять порядка 0,3–0,8 секунд.

Как работает автоматический ввод резервного питания

Принцип действия АВР основан на контроле напряжения в цепи. Это может осуществляться с помощью любых реле напряжения либо цифровых логических блоков защиты. Однако принцип работы всё рано остаётся неизменным. Рассмотрим его на самом простом примере.

Это однолинейная схема, на которой видно, что контроль наличия напряжения осуществляется контактором КМ. Оба автомата QS1 и QS2 должны быть включены, при этом катушка КМ получит питание и будет втянута, а соответственно её замыкающий контакт в цепи основного ввода тоже замкнут и размыкающий контакт в цепи резервного ввода разомкнут. Тем самым электроснабжение потребителя осуществляется от основной сети и светятся соответствующие лампы. В случае неисправности питания по линии L12 и снижения напряжения до величины, когда контактор КМ отключится, произойдёт размыкание замыкающего контакта в основной линии и одновременно с этим контакт в цепи резервного питания линии L22 перейдёт в замкнутое состояние, тем самым подав напряжение к потребителю от резервного источника. Обратная ситуация произойдёт при возобновлении основного электроснабжения по линии L12.

На видео ниже наглядно рассмотрен принцип работы АВР в сетях 6 кВ:

Требования к системе

Основными требованиями, предъявляемыми к системам АВР являются:

  • Быстродействие.
  • Надёжность включения.
  • Подача напряжения только если на участке нет короткого замыкания, то есть обязательно должна быть блокировка при КЗ.
  • Однократность срабатывания.
  • Возможность настройки порога включения резервного электроснабжения, чтобы она не срабатывала, например, при просадках напряжения во время запуска мощных электродвигателей.
  • Срабатывание только при условии, если на резервном вводе есть электроэнергия.

Естественно, что простейшая схема на контакторах не сможет реализовать все предъявляемые требования к системе АВР. Для этого в современной электронике применяются логические системы, подающие сигнал на включение резервного источника питания только при соблюдении всех правил и блокировок. Также для дополнительной надёжности даже применяется механическая блокировка.

Классификация АВР и варианты реализации

Осуществляться резервное питание и его автоматический ввод может от отдельного генератора, аккумуляторной батареи либо отдельной линии.

В свою очередь все системы АВР по своему действию делятся на:

  1. Односторонние. Одна секция или же ввод является рабочим (основным), а второй резервный. В случае исчезновения рабочего напряжения включается резерв.
  2. Двухсторонние. Когда существуют две раздельно питающиеся секции и соответственно две линии являются рабочими, и при отключении одной любой из них, другая является резервной.

Также АВР может быть с восстановлением питания по нормальной схеме и без него. Во втором случае происходит полное погашение нерабочей сети и даже при повторном возобновлении питания схема не будет работать как прежде по двум линиям.

Особенности работы с бытовыми генераторами

Для того чтобы организовать автоматический ввод резерва в доме можно в качестве источника резервного питания использовать автономный генератор. Он даст возможность длительное время обеспечить электрической энергией целый дом, а величина подключаемой нагрузки зависит от мощности самого генератора. Вот схема подключения:

Введение генератора в качестве источника электроэнергии вместо сетевого напряжения можно практиковать в однофазной и трёхфазной сети с учетом модели генератора. Однако для того, чтобы этот процесс был полностью автоматизирован необходимо, чтобы генератор был оснащён стартером, а также понадобится специальный блок, состоящий из набора коммутационных устройств, включающих стартер только на время запуска и отключающих при возобновлении подачи сетевого напряжения. Выглядит он вот так:

Такой блок для генератора совместим с любым типом двигателя и имеет три положения: «Стоп», «Включен, «Запуск». Правда, в зимнее время необходим прогрев двигателя внутреннего сгорания, но этот блок можно запрограммировать, учитывая и эту особенность. Крепится он на дин рейку в распределительном щитке.

На видео доходчиво объясняется схема, по которой можно сделать автоматический ввод резерва для генератора своими руками:

АВР на аккумуляторах

С развитием преобразователей, трансформирующих постоянный ток в переменный, появляется возможность использовать, например, автомобильный аккумулятор в качестве источника резервного питания. Помимо аккумулятора, понадобится приобрести современный автомобильный инвертор, преобразующий 12 Вольт постоянного напряжения в 220 Вольт переменного.

Правда, этот источник вряд ли можно использовать для силовой нагрузки, но цепи освещения он может легко обеспечить стабильным напряжением на время непродолжительной аварии на линии. При этом длительность работы будет зависеть от мощности потребителей и емкости аккумуляторов.

Для увеличения ёмкости можно параллельно подключить несколько аккумуляторных батарей. Схема соединения самой системы АВР может быть реализована с помощью пускателя.

Пускатель включается в основную цепь, а при проблемах в сети его подвижная часть отпадает, тем самым его размыкающий блок-контакт, введённый в цепь аккумулятора, запускает систему автоматического электроснабжения. Этот способ менее затратный, нежели генераторный, но не способен выдавать длительное время ток для мощных бытовых приборов.

Применение логического контроллера

Для двух сетей электроснабжения трехфазным питанием применяются уже готовые блоки АВР с применением логического цифрового контролера, который может учитывать множество параметров, требуемых для создания идеальной системы. На нём имеется вся нужная маркировка и инструкция по управлению и подключению.

Правда, перед тем как подключить модуль и приобрести его, нужно задуматься, имеется ли резервный источник питания с более надёжным электроснабжением. Так как нет смысла подключать его к одной и той же системе трёхфазной сети, то есть питающейся от одного трансформатора 6/0,4 кВ.

Организация АВР в высоковольтных цепях

Для того чтобы выполнить организацию автоматического резервирования в цепях с напряжением больше 1000 Вольт, в качестве элемента, измеряющего и контролирующего сетевую энергию, служит специальный трансформатор напряжения, на вторичной обмотке которого в нормальном режиме работы 100 Вольт. Для связи его с системой АВР используется реле минимального напряжения или же реле контроля фаз. Оно реагирует не только на понижение величины сетевого напряжения, но и на исчезновение хотя бы одной фазы, например, при обрыве воздушной линии ВЛ. Здесь уже обязательно выполнение всех требований, касающихся правильному вводу АВР, а иногда даже при системе с восстановлением устанавливается выдержка времени на возврат в исходную первоначальную конфигурацию.

Читать еще:  Каталог розеток выключателей abb

Также важно отметить, что в высоковольтных сетях схема автоматики АВР реализуется на электромеханических реле старого образца или современных многофункциональных микропроцессорных терминалах защиты, которые выполняют несколько функций, в том числе и АВР.

Напоследок рекомендуем просмотреть полезное видео по теме статьи:

Теперь вы знаете, что такое автоматический ввод резерва, какие бывают схемы АВР и какой принцип работы у данной системы электроснабжения. Надеемся, предоставленная информация и видео уроки были для вас полезными!

Наверняка вы не знаете:

АВР автоматический ввод резерва на автоматах с электроприводом

Цена АВР зависит от :
-ТЗ заказчика, опросного листа, однолинейной схемы.
выбранного оборудования (ABB, Schneider electric, Siemens, EATON, IEK, DEKraft, TDM и др.)
-производителя корпуса электрощита (ABB, Schneider electric, Rittal, IEK,TDM, пр-во Россия)
-климатического исполнения: IP31, IP54.
наличия и типа приборов учета, КИПа

Сэкономил на проекте — разорился на объекте

Схемы АВР, разработанные с использованием автоматических выключателей, применяются для обеспечения гарантированного питания.
Основные особенности таких АВР:
— автоматический выключатель имеет 2 положения:включён — выключен;
— после включения/выключения не потребляет электроэнергии;
— автоматические выключатели в схеме АВР являются аппаратами защиты электросети
— меньшие габариты АВР по сравнению с АВР реализованных на контакторах;
— стоимость АВР на автоматических выключателях на токи свыше 400 А может быть дешевле, чем АВР на контакторах.
— АВР на автоматических выключателях имеют больше функциональных и возможностей.

Схема АВР 2-1 на автоматах

Схема АВР 2-1G на автоматах

Два ввода от сети работают на одну секцию потребителей.
Первый ввод от сети, второй — от резервного источника. Ввод от сети приоритетный.
Принципиальная схема ATS500 2-1G Tmax.Выключатели — Tmax T4-T5-T6, Tmax XT2, Tmax XT4.
Принципиальная схема ATS500 2-1G Tmax.Выключатели — Emax E1-E6, Emax 2, Emax X1, Tmax T7M.

Схема АВР 2-2 на автоматах, с секционным выключателем

Два независимых ввода от сети работают на две секции по требителей.
Резервирование осуществляется за счет секционно го выключателя.
Принципиальная схема ATS500(-E) 2-2 Tmax.Выключатели — Tmax.
Принципиальная схема ATS500(-E) 2-2 T7-Tmax.Выключатели — T7-Tmax.
Принципиальная схема ATS500(-E) 2-2 Emax.Выключатели — Emax E1-E6, Emax 2, Emax X1, Tmax T7M.

Схема АВР 2-2 на автоматах, схема «крест»

Два независимых ввода от сети работают на две секции по требителей (схема «крест»).
Резервирование осуществляется за счет переключения секции потребителей на другой ввод.
Принципиальная схема ATS500(-E) 2-2 Tmax.Выключатели — Tmax T4-T5-T6, Tmax XT2, Tmax XT4.
Принципиальная схема ATS500(-E) 2-2 Emax .Выключатели — Emax E1-E6, Emax 2, Emax X1, Tmax T7M.

Схема АВР 2-2G на автоматах, второй ввод — от резервного источника.


Два независимых ввода от сети работают на две секции потребителей. Первый ввод от сети, второй — от резервного источника.
Резервирование осуществляется за счет секционного выключателя. Первая секция потребителей может быть назначена неприоритетной при работе от резервного источника.
Принципиальная схема ATS500(-E) 2-2G Tmax.Выключатели — Tmax T4-T5-T6, Tmax XT2, Tmax XT4..
Принципиальная схема ATS500(-E) 2-2G Emax.Выключатели — Emax E1-E6, Emax 2, Emax X1, Tmax T7M.

Схема АВР 3-1 на автоматах.

Три взаимно резервированных ввода от сети, работающие на одну секцию потребителей.
Приоритет вводов выбирается переключателем на панели управления
Принципиальная схема ATS500(-E) 3-1 Tmax.Выключатели — Tmax T4-T5-T6, Tmax XT2, Tmax XT4
Принципиальная схема ATS500(-E) 3-1 Emax.Выключатели — Emax E1-E6, Emax 2, Emax X1, Tmax T7M.

Схема АВР 3-1G на автоматах.

Три взаимно резервированных ввода, работающие на одну секцию потребителей. Два ввода от сети, третий — от резервного источника.
Оба ввода от сети являются приоритетными по отношению к вводу от резервного источника. Взаимный приоритет вводов от сети выбирается переключателем.
Принципиальная схема ATS500(-E) 3-1G Tmax.Выключатели — Tmax T4-T5-T6, Tmax XT2, Tmax XT4.
Принципиальная схема ATS500(-E) 3-1G Emax.Выключатели — Emax E1-E6, Emax 2, Emax X1, Tmax T7M.

Схема АВР 3-1CG на автоматах.

Три взаимно резервированных ввода, работающие на одну секцию потребителей. Два ввода от сети, третий — от резервного источника.
Оба ввода от сети являются приоритетными по отношению к вводу от резервного источника.
Вводы от сетимогут быть равнозначными либо один из них может быть приоритетным.
Принципиальная схема ATS500(-E) 3-1CG Tmax.Выключатели — Tmax T4-T5-T6, Tmax XT2, Tmax XT4.
Принципиальная схема ATS500(-E) 3-1CG Emax.Выключатели — Emax E1-E6, Emax 2, Emax X1, Tmax T7M.

Типовые решения по автоматическому вводу резерва ONI

Автоматический ввод резерва (АВР) ONI позволяет оперативно восстанавливать подачу электроэнергии в аварийных ситуациях.

Система АВР обеспечивает бесперебойным электропитанием оборудование от двух независимых источников электроснабжения.

Бесперебойность электроснабжения достигается путем переключения потребителей с основного источника электроснабжения на резервные при:

  • Обрыве одной из фаз питающей сети
  • Повышенном напряжении питающей сети
  • Пониженном напряжении питающей сети
  • Асимметрии напряжения фаз питающей сети
  • Нарушении последовательности чередования фаз

Область применения

Варианты исполнения

2 ввода 1 потребитель 220В АС

2 ввода 2 потребителя 220В АС

1 или 2 ввода и ДГУ 1 потребитель

2 ввода 1 потребитель 24В DC

2 ввода 2 потребителя 24В DC

2 ввода и ДГУ 2 потребителя

Преимущества

  • Область применения
  • Реализуемые функции
  • Состав решения
  • Варианты исполнения
  • Преимущества
  • Документация
  • Программное обеспечение
  • Альбом решений

Данное решение предназначено для эксплуатации в составе систем:

  • электрических подстанций;
  • транзитных линий, которые нормально работают с разрывом транзита;
  • силовых трансформаторов и секционных выключателей;
  • распределительных сетей 0,4 кВ, питающих важные объекты жизнедеятельности (котельные, насосные станции, очистные сооружения и др.);
  • в жилых, офисных и общественных зданиях.
  • мониторинг распределительных сетей от основного источника;
  • подача сигнала на запуск резервного источника питания (например, если в качестве независимого источника используется ДГУ (дизель-генераторная установка));
  • перевод нагрузки на резервный источник питания;
  • подача сигнала на возврат к основному источнику питания;
  • перевод нагрузки на питание от сети;
  • задержка времени отключения (для обеспечения необходимости дать ДГУ остыть перед отключением);
  • механическая блокировка, которая предотвращает переключение подачи электроэнергии от разных источников при помощи силовых кабелей или кабелей системы управления;
  • ручной режим переключения на альтернативный источник питания.
Читать еще:  Термовакуумный выключатель клапана рециркуляции ваз 21213

Все реализуемые функции автоматического управления осуществляются программируемым логическим реле ONI PLR-S. Реле контроля фаз следит за качеством электропитания каждого из источников. Управление АВР, его настройка и мониторинг могут осуществляться как по месту, так и с удаленного АРМ по стандартному протоколу Modbus RTU через сеть RS-485.

В состав решения входят:

  • контакторы;
  • реле контроля фаз (напряжения);
  • программируемое логическое реле ONI PLR-S;
  • кнопки местного управления;
  • местная панель управления (опция);
  • автоматические выключатели (опция);
  • блок бесперебойного питания (опция);»
  • графическая панель оператора с диагональю 4,3 дюйма ONI ETG.

По требованию заказчика базовая схема может быть дополнена различными опциональными элементами: кнопками ручного перехода на нужную сеть, кнопкой ручного возврата на приоритетную сеть, переключателем выбора приоритетной сети, модулем дискретного ввода/ вывода для дистанционного управления и мониторинга состояний сетей и самого АВР.

Возможны следующие варианты исполнения для автоматического ввода резерва:

  • два ввода на общую систему шин (основной и резервный);
  • два рабочих ввода на две секции шин с секционированием;
  • два рабочих ввода на две секции шин с секционированием плюс один ввод от ДГУ.

Преимущества АВР на контакторах:

  • низкая цена;
  • защитные функции.

Ограничения для АВР на контакторах:

  • время переключения от 16 до 120 мс;
  • сравнительно небольшое количество циклов срабатывания.

Шкаф АВР на автоматическом выключателе состоит из переключателя, моторного привода и реле контроля фаз.

Преимущества АВР на автоматическом выключателе:

  • простота монтажа и обслуживания;
  • возможность работы в ручном режиме;
  • высокая надежность за счет малого количества элементов.

Ограничения для АВР на автоматическом выключателе:

  • относительно высокая цена;
  • отсутствие защитных функций.
  • 20181102 Альбом схем готовых решений АВР-ДГУ-I. AutoCAD. Скачать
  • 20181102 Альбом схем готовых решений АВР-ДГУ-I. PDF. Скачать
  • 20181201 Альбом схем готовых решений АВР-II. AutoCAD. Скачать
  • 20181201 Альбом схем готовых решений АВР-II. PDF. Скачать
  • Инструкция АВР+ДГУ 4.0. MS Word. Скачать
  • Инструкция АВР+ДГУ 4.0. PDF. Скачать
  • Как загрузить программу в ONI PLR-S. Скачать

Программы для панелей оператора

  • Программа для панели оператора ETG4 v4.0. Скачать
  • Программа для панели оператора ETG7 v4.0. Скачать

Программы для программируемого логического реле

  • АВР 1 ввод с ДГУ 1 потребитель 24VDC. Скачать
  • АВР 2 ввода 1 потребитель 24VDC. Скачать
  • АВР 2 ввода 1 потребитель 220VAC. Скачать
  • АВР 2 ввода 2 потребителя 24VDC. Скачать
  • АВР 2 ввода 2 потребителя 220VAC. Скачать
  • АВР 2 ввода c ДГУ 1 потребитель 24VDC. Скачать
  • АВР 2 ввода с ДГУ 2 потребителя 24VDC. Скачать

Программное обеспечение для ONI PLR

  • ONI PLR Studio-v3.4.1.6-Setup. Скачать

Программное обеспечение для панелей оператора

  • ONI Visual Studio-2.5.10739.0. Скачать

Микропроцессорный быстродействующий АВР как средство повышения надежности электроснабжения ответственных потребителей

Авторы: А.О. Павлов, Д.В. Медведев (ООО «НПП Бреслер»).

Опубликовано в журнале Химическая техника №10/2016

Применяемые в настоящее время схемы электроснабжения промышленных узлов нагрузки от двух независимых источников с использованием средств автоматики (АПВ, АВР) обладают достаточно высокой степенью надежности. Однако применение АВР двустороннего действия в традиционном исполнении на секционном выключателе 6; 10; 35 кВ ЗРУ, РП позволяет получить минимальное время работы средств автоматики – 0,4…0,5 с [1–3], а перерыв в электроснабжении после его кратковременного нарушения для потребителей составляет более 1 с.

Существующие схемы и устройства АВР не обеспечивают бесперебойное электроснабжение синхронных и асинхронных двигателей ответственных механизмов подстанций при кратковременных нарушениях электроснабжения в энергосистеме [4], приводят к значительному экономическому ущербу при нарушении непрерывности технологических процессов, могут являться причинами возникновения гидравлических ударов, повреждения трубопроводов и оборудования насосных станций при переключении на резервный источник за время более 90…120 мс [5]. Главным препятствием существующих устройств АВР является относительно большое время срабатывания и время включения существующих секционных выключателей, органов АВР, отсутствие алгоритмов работы АВР для подстанций с несколькими вводами и при наличии трех секций распределительных устройств.

Микропроцессорный быстродействующий АВР (БАВР) предназначен для следующих целей:

  • повышение остаточных напряжений на шинах ТП 6(10)/0,4 кВ и уменьшение отключений магнитных пускателей, контакторов в цепи питания низковольтных электродвигателей при провалах напряжения;
  • обеспечение непрерывности технологических процессов (надежности электроснабжения потребителей и устойчивости высоковольтной электродвигательной нагрузки) при кратковременных нарушениях электроснабжения, попадающих в зону действия АВР;
  • улучшения условий самозапуска электродвигателей после восстановления электроснабжения потребителей.

Новизна разработанного устройства [6] проявляется в следующем:

  • БАВР основан на цифровых системах обработки значений входных параметров и в связи с этим дает дополнительные возможности при эксплуатации и функционировании устройства;
  • БАВР легко (на программном уровне) адаптируется к конкретным схемам распределительного устройства и видам нарушения электроснабжения;
  • сокращается время переключения на резервный источник при трехфазном КЗ в цепи питания секции распределительного устройства до 44 мс.

Для эффективной работы БАВР электроснабжение потребителей необходимо осуществлять от двух независимых источников И1 и И2. Основной зоной защиты БАВР является участок электроснабжения от головного выключателя ГВ1 (ГВ2) до выключателя на вводе ВВ1 (ВВ2), рис. 1. Если РУ является распределительным устройством ГПП, то головные выключатели (ГВ) располагаются на стороне напряжения 35–110–220 кВ, а вводные (ВВ) – на стороне напряжения 6(10) кВ. Если РУ является распределительным устройством второй ступени, то и ГВ и ВВ располагаются на стороне напряжения 6(10) кВ.

Рис. 1. Структурная схема зоны действия БАВР при КЗ

При трехфазном КЗ в цепи питания (точка К1, мощность Р1 изменит направление, напряжение U1 δ (δ ≈ 15°) пусковой орган выдаст сигнал на отключение выключателя ВВ1(здесь δ12 – угол между напряжениями прямой последовательности на первой U1 и второй U2 секциях). Полный цикл срабатывания БАВР при этом t ≤ 0,11 с.

При любом виде внешнего КЗ в цепи напряжения 6(10) кВ (точки К3, К4) БАВР не работает, поскольку не изменяется направление мощности Р1.

Для управления включением и отключением выключателей БАВР использованы IGBT-транзисторы.

Дополнительной зоной защиты БАВР являются кратковременные нарушения электроснабжения, вызванные близкими трехфазными КЗ в соседних присоединениях к источнику электроснабжения (точка К2) либо в цепи питания выше головного включателя (точка К5). При таких КЗ изменяется направление мощности Р1 и время цикла БАВР t ≤ 0,06 с. БАВР включает: а) быстродействующие вакуумные выключатели типа VM-1T, VD-4, Evolis, ВВЭМ, ВБЧЭ, ВБМ и др.; б) микропроцессорное быстродействующее пусковое устройство АВР (МБПУ АВР), размещаемое в шкафах КРУ серий К-104м, К-113, КРУ2-10 и т.п., в шкафах КСО и других типах ячеек РУ 6(10) кВ. БАВР может включать индукционно-динамические устройства ускорения коммутациями выключателей, если не обеспечивается требуемое время переключения на резервный источник. МБПУ АВР представляет собой многоэлементное устройство релейной защиты и противоаварийной автоматики и обеспечивает двухстороннее действие на отключение выключателей двух вводов и на включение секционного выключателя резервного питания. Логика ПУ АВР обеспечивает адаптируемое АВР: в зависимости от вида аварии обеспечивается опережающее АВР (при потерях питания, вызванных неоперативными отключениями питающих фидеров), одновременное АВР или АВР с контролем от блок-контактов отключаемого вводного выключателя (при потерях питания, вызванных КЗ в питающей линии).

Читать еще:  Защитные рамки двойной выключатель

Микропроцессорное пусковое устройство БАВР измеряет в текущем режиме времени фазные напряжения на шинах двух вводов распределительного устройства (РУ) и фазные токи на вводах РУ и преобразует их в комплексные действующие значения напряжений U1 (U2) и токов I1 (I2) прямой последовательности. Дальнейшая работа пускового органа БАВР осуществляется за счет программной обработки результатов измерений.

Блокирующим сигналом для работы БАВР является направление (не величина) мощности прямой последовательности. Если мощности P1 = U1I1cosϕ2 (или P1 = = U2I2cosϕ2) направлены от источника в нагрузку, то БАВР не работает, что бы не происходило в системе электроснабжения.

Если мощность P1 (или P2) меняет направление (от нагрузки к источнику), а напряжение на вводе U1 δуст (δ21 > δуст), то пусковое устройство подает сигнал на отключение первого (второго) вводного выключателя, и от блок-контактов последнего подается сигнал на включение секционного выключателя.

На рис. 2 представлена принципиальная схема предлагаемого устройства быстродействующего АВР.

Рис. 2. Функциональная схема работы МПБУ АВР

Устройство содержит основной 1 и резервный 2 источники питания, вводные выключатели рабочих вводов 3 и 4, секционный выключатель 5, шины подстанции 6 и 7, трехфазные трансформаторы тока 8, 9 и напряжения 10, 11, 12, 13; микропроцессорное пусковое устройство АВР 14, блок контакты вводных 15, 16 и секционного выключателей 17, блокирующие сигналы релейной защиты (блоки 18, 19) на управляемые выключатели, управляемые ключи включения-отключения вводных и секционных выключателей 20, 21, 22, устройство индикации 23.

Программно реализованный блок аналогово-цифровых преобразователей 24 (25) соединен с блоком преобразований аналоговых сигналов 26 (27) в дискретные действующие значения токов и напряжений. Дополнительно с блока дискретных сигналов и констант 28 поступают входные сигналы реле положения «включено» и «отключено» выключателей 3 и 4, автоматов цепей измерения напряжения на секциях 6 и 7, релейных защит на вводах и секционном выключателе и сигнал сброса в блок управления 41 устройства 14. Выходы блока 26 (27) соединены с входами блока минимального тока 29 (30), активной мощности прямой последовательности 31 (32), блока минимального напряжения 33 (34) и угла сдвига фаз 35 (36) между источниками питания 1 и 2. Выходы блоков 29, 31, 33, 35 (30, 32, 34, 36) соединены через логические блоки «ИЛИ» (37 и 38) и «И» (39, 40) с устройством управления 41. В блок управления поступают дискретные сигналов и констант с блока 28, а результаты обработки сигналов и работы устройства отображаются с помощью блока индикации 23.

Программно реализованный блок аналогово-цифровых преобразователей 24 (25) соединен с блоком преобразований аналоговых сигналов 26 (27) в дискретные действующие значения токов и напряжений. Дополнительно с блока дискретных сигналов и констант 28 поступают входные сигналы реле положения «включено» и «отключено» выключателей 3 и 4, автоматов цепей измерения напряжения на секциях 6 и 7, релейных защит на вводах и секционном выключателе и сигнал сброса в блок управления 41 устройства 14. Выходы блока 26 (27) соединены с входами блока минимального тока 29 (30), активной мощности прямой последовательности 31 (32), блока минимального напряжения 33 (34) и угла сдвига фаз 35 (36) между источниками питания 1 и 2.

Выходы блоков 29, 31, 33, 35 (30, 32, 34, 36) соединены через логические блоки «ИЛИ» (37 и 38) и «И» (39, 40) с устройством управления 41. В блок управления поступают дискретных сигналов и констант с блока 28, а результаты обработки сигналов и работы устройства отображаются с помощью блока индикации 23.

Программное обеспечение микропроцессорного пускового устройства позволяет управлять работой быстродействующего АВР в соответствии с заложенным алгоритмом.

Для режимов с малыми токами на вводе на уровне помех, когда работа блока направления активной мощности не предсказуема, предусмотрена уставка минимального тока. Если I1-2 (I2-1) меньше Iуст, то работа быстродействующего АВР разблокируется так же, как при изменении направления мощности прямой последовательности.

Вводные 3, 4 и секционный выключатели 5 распределительного устройства снабжены IGBT-транзистором включения–отключения 20, 21, 22 и могут быть дополнены индукционно динамическим устройством ускорения, позволяющим сократить собственное время включения и отключения выключателей более чем в 2 раза.

Индукционно динамическое устройство ускорения на базе конденсаторной батареи, располагающейся в ячейках выключателей быстродействующего АВР, запасает энергию в нормальном режиме работы подстанции и с помощью устройства управления 41 по команде быстродействующего АВР переключается на катушку отключения (включения) выключателей, подавая повышенное напряжение на эти катушки. За счет индукционно динамического устройства ускорения собственное время включения и отключения выключателя сокращается в 2 раза.

При наличии сигнала о напряжении, снимаемом до выключателя ввода с помощью блоков 12 и 13 (см. рис. 2), устройство позволяет обеспечить автоматическое восстановление схемы нормального режима после возобновления электроснабжения от основного источника.

Быстродействующий АВР с микропроцессорным блоком пускового устройства отличается от обычного АВР тем, что сокращается время цикла АВР, все двигатели потерявшей питание секции остаются в работе, синхронные двигатели не теряют синхронизма, токи включения двигателей, питающихся от поврежденного ввода, при срабатывании быстродействующего АВР не превышают 2…2,5Iном в отличие от АВР, когда они составляют 5…7Iном.

Предлагаемое устройство контролирует напряжение до вводных выключателей, программным способом обеспечивает ввод всех уставок и накладки устройства, обеспечивает возможность синфазного включения при наличии синхронной двигательной нагрузки на секциях распределительного устройства. Логика работы устройства обеспечивает адаптацию быстродействующего АВР, когда при исчезновении питания разрешается опережающее АВР, а при возникновении короткого замыкания в питающей линии – одновременное АВР или быстродействующее АВР с контролем от блок-контактов отключившегося вводного выключателя. Логика работы устройства исключает возможность включения резервного источника на не отключенное КЗ и обеспечивает высокое быстродействие устройства при исчезновении питания. БАВР отличается следующим:

  • возможностью записи и отображения переходных процессов при любом срабатывании быстродействующего АВР, что позволяет выявить любые нарушений электроснабжения;
  • отсутствием изменения параметров уставок блоков реле пускового устройства и обеспечением их сохранения в энергонезависимой памяти при снятии напряжения оперативного питания;
  • обеспечением автоматического восстановления схемы нормального режима после появления напряжения на поврежденном вводе;
  • контакты выходных реле устройства не замыкаются ложно при подаче и снятии напряжения оперативного постоянного тока с перерывом любой длительности.
0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты