Ivalt.ru

И-Вольт
6 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Основные характеристики для выбора автоматических выключателей

Время — токовые характеристики автоматов

2017-11-23 Статьи Один комментарий

Время-токовая характеристика автоматического выключателя — это показатель, определяющий время срабатывания защитного устройства в зависимости от величины протекающего через него тока по отношению к номинальному току устройства.

Правильный выбор автомата по время-токовой характеристике позволяет избежать ложных срабатываний при подключении в сеть нагрузки, имеющей высокие пусковые токи. Например это происходит при подключении в сеть электродвигателя, который имеет большой пусковой ток, превышающий номинальный в 3-8 раз. Этого тока будет достаточно чтобы отключился автомат, имеющий характеристику срабатывания не предназначенную для такого типа нагрузок.

Также при правильном подборе автоматических выключателей по их время-токовым характеристикам соблюдается селективность (избирательность), то есть при повреждении какого-либо участка цепи сработает только тот автоматический выключатель, который обеспечивает защиту именно этого участка, а остальные автоматы не отключатся.

Я думаю все обращали внимание на буквенное обозначение рядом с номинальным током на корпусе модульного автоматического выключателя. Так вот эти буквы и указывают время-токовую характеристику, то есть чувствительность автомата.

Чаще всего встречаются автоматы с характеристиками B, C и D. Это стандартные типы характеристик, указанные в ГОСТ Р 50345-99. Кроме этих типов существуют еще типы A, K и Z, но встречаются они гораздо реже, а в жилых зданиях так и вовсе не используются. Различные типы рекомендовано использовать следующим образом:

  • А — Для размыкания цепей с большой протяженностью электропроводки и защиты полупроводниковых устройств
  • B — Для осветительных и розеточных групп общего назначения
  • C — Для осветительных цепей и электроустановок с умеренными пусковыми токами (двигателей и трансформаторов)
  • D — Для цепей с активно-индуктивной нагрузкой, а также защиты электродвигателей с большими пусковыми токами
  • K — Для индуктивных нагрузок
  • Z — Для электронных устройств

Время срабатывания электромагнитного расцепителя для каждой из характеристик выражается в значении величины протекающего тока по отношению к номинальному. Так для B это значение составляет от 3·In до 5·In (In — номинальный ток), то есть его расцепитель сработает при токе, превышающем номинальный в 3-5 раз. Для С пределы составляют уже от 5·In до 10·In, а для D — от 10·In до 20·In. Рассмотрим графики, отображающие время-токовые характеристики для типов B, C и D.

График время-токовой характеристики B

График время- токовой характеристики C

График время- токовой характеристики D

На оси Х отображается значение, показывающее отношение протекающего тока по отношению к номинальному (I/In). На оси Y — время срабатывания в секундах. График для каждой из кривой характеристик разделен на две линии, показывающие время срабатывания электромагнитной защиты (нижняя линия), отвечающей за отключение при коротких замыканиях и тепловой защиты (верхняя линия), отвечающей за отключение от перегрузок.

Верхняя кривая показывает холодное состояние автомата, нижняя кривая характеризует горячее состояние автомата. Пунктирной линией показана верхняя граница время-токовой характеристики для автоматических выключателей с номинальным током In меньше или равно 32 A.

Так например если смотреть график для время-токовой характеристики С автоматический выключатель 16 А при токе 80 А (5·In) должен отключиться в горячем состоянии за 0,02 сек. В холодном состоянии при таком же токе автомат отключится за 11 сек. (если номинал автомата меньше или равен 32 A), если больше 32 А — то отключение произойдет через 25 сек. Если предел отключения будет равен 10·In, то в горячем состоянии отключение произойдет через 0,01 сек, а в холодном — за 0,03 сек.

Таким образом, график время-токовой характеристики позволяет определить правильно автоматический выключатель для конкретных условий эксплуатации. Теперь осталось только разобраться какие типы автоматов предпочтительно использовать в быту.

Понятно, что для городской квартиры, где нагрузка активная либо слабоиндуктивная, выбирать необходимо либо категорию B либо С. По тепловой защите временной интервал срабатывания B и С будет одинаковым, отличаться будет только время срабатывания электромагнитного расцепителя. Раньше повсеместно использовались автоматы с характеристикой С, да и по сей день в магазинах в основном продают именно этот тип, а про другие типы как-то забывают. Однако в настоящее время рекомендуется для линий освещения и розеточных групп применять тип B, имеющий большую чувствительность, а в качестве вводного автомата использовать С. Таким образом будет соблюдаться селективность и при аварийной ситуации отключаться будет именно групповой автомат, а не вводной, тем самым не будет обесточиваться полностью вся квартира.

Характеристики срабатывания автоматических выключателей

При выборе автоматического выключателя для защиты электрооборудования многие учитывают номинальный ток, напряжение и количество полюсов (однополюсные, двухполюсные, трехполюсные или четырехполюсные) выключатели. Что в принципе верно, но есть одно «но».

На практике встречаются случаи, когда подобрав автоматический выключатель для защиты скажем асинхронного электродвигателя, по номинальным данным машины, и установив его, при пуске выключатель срабатывает и разрывает цепь. В чем причина? Ведь все выбрано правильно, токи соответствуют, напряжение тоже, с количеством полюсов прогадать очень трудно, но автомат срабатывает при пуске.

Дело в том, что при прямом пуске асинхронного электродвигателя ток статора достигает порядка семи номинальных токов. Поэтому срабатывает автомат? Да, поэтому. Но подобрав другой, такой же автомат, но с другой характеристикой срабатывания данная система работает нормально.

Поэтому при выборе автоматических выключателей следует обращать внимание на его характеристики срабатывания и сравнивать их с графиком вашей нагрузки. Давайте рассмотрим основные характеристики автоматических выключателей.

Характеристика МА

Данный тип выключателей не имеет теплового расцепителя и применим только для защиты от коротких замыканий. Наиболее часто применим в цепях защиты электроприводов, где реализована защита от перегрузки другим способом (токовые реле, микропроцессорные системы).

Читать еще:  Автоматический выключатель с комбинированным расцепителем шнайдер

Характеристика А

Предназначены для защиты цепей в которых не предусмотрены перегрузки по току. Это могут быть полупроводниковые устройства выходящие из строя при превышении заданных значений тока. График такой характеристики показан ниже:

Как мы видим из графика при перегрузке 1,13 -1,45 Iн тепловой расцепитель может сработать в течении 60 мин, а при 2- 3 кратном превышении – почти мгновенно.

Характеристика В

Такой тип защиты довольно часто используют для компьютерного и электронного оборудования или же в системах где пусковые пики малы, а система подвержена очень малым перегрузкам. График приведен ниже:

При длительных режимах она ничем не отличается от характеристики А, а вот при пуске выдерживает больший ток 3 – 5 номиналов.

Характеристика С

Наиболее распространенная характеристика автоматических выключателей. Применяется практически во всех системах электроснабжения имеющих умеренные пусковые токи, поэтому практически в любом электрощитке можно увидеть это устройство. График ниже:

Как видим, перегрузочная их способность лежит в промежутке от 5 до 10 номиналов. Что позволяет им недолгое время пропускать умеренные значения пускового тока.

Характеристика D

Применимы для защиты электродвигателей, которые пускаются напрямую от сети без применения преобразователей, и имеющие большие скачки пусковых токов, а также для других устройств имеющих большие кратковременные перегрузки. График ниже:

В этих устройствах кратковременные перегрузки могут достигать 10 – 20 номиналов.

Характеристика К

Такой тип автомата имеет довольно большой диапазон разброса тока срабатывания при работе на постоянном и переменном напряжении и применяют его, как правило, в цепях с индуктивной нагрузкой, иногда для электродвигателей и различных силовых преобразователей. Кривая срабатывания показана ниже:

Как видим на «переменке» диапазон отключения 10 – 15 номиналов, при «постоянке» 10 – 25 номиналов.

Характеристика Z

Также имеет разброс при работе на постоянном и переменном напряжении и предназначен для обеспечения максимальной защиты электронных устройств управления. Кривая работы приведена ниже:

При работе на переменном напряжении отключение происходит при достижении 2 – 3 номиналов, при постоянном 2 – 5.

Как видим, выбор автоматического выключателя для защиты электрических цепей не такая уж и простая задача, как кажется на первый взгляд. Поэтому при выборе автоматического выключателя необходимо сопоставлять не только номинальные данные (напряжение, ток, фазность), но и знать характеристики работы системы, для которой выбирается автомат, чтобы выбранный вами автоматический выключатель в полной мере обеспечивал защиту вашего оборудования.

Правильный выбор автоматического выключателя: расчет основных характеристик и параметров

В современной системе подачи электроэнергии в дома все продумано так, чтобы максимально обезопасить квартирное имущество и здоровье его жильцов от утечки, замыкания или случайного возгорания. Основным устройством, позволяющим своевременно прекратить поступление тока по отдельной ветки из-за какой-либо возникшей неполадки является автоматический выключатель.

  • Что такое «автомат»
  • Каким бывает автовыключатель
  • Что важно знать об автомате
  • Как выбрать подходящий
  • Как грамотно монтировать
  • Фото автоматического выключателя

Что такое «автомат»

Среди электротехников автоматические автоматы лаконично именуются «автоматами», но его суть от этого не меняется: благодаря особенной встроенной системе реагирования он «срабатывает» на отключение, зафиксировав утечку тока, замыкание или возгорание.

Данное устройство пришло на смену так называемым «пробкам», но имеет перед ними неоспоримые преимущества:

  • Долговечность, так как рассчитан на многоразовое «срабатывание»;
  • Удобство в использовании – отключается и включается опускание рычажка;
  • Компактность, что заметно, если сравнить фото современных автоматических выключателей и старых пробок;
  • Надежность, ведь индекс срабатывания и чуткость в разы превышает показатели аналога.

Чаще всего в домах устанавливаются не один, а несколько автоматов, что позволяет надежно защитить каждую ветку элекросети. Например, комнату или мощный потребляющий бытовой прибор.

Каким бывает автовыключатель

Принцип действия у всех автоматов идентичен, а комплектация, конструкция, производитель – разные, что обусловило распространение нескольких видов автоматических выключателей:

  • Однополюсные или многополюсные, которые отличаются количеством подключаемых проводников;
  • Тепловые или электромагнитные, в зависимости от типа встроенного реагирования на увеличение температуры в проводниках или усиления магнитных волн.
  • Также различаются автоматы по максимально выдерживаемой нагрузки, виду крепления, типу расцепителя и предела отключающейся способности.

Что важно знать об автомате

Чтобы защитный рефлекс автомата срабатывал своевременно и безукоризненно, важно знать необходимые характеристики автоматических выключателей. Основная из них – это номинально выдерживаемое напряжение, которое у различных видов может варьироваться от 10 до 40 Ампер.

Десятиамперные выключатели рекомендуется выбирать для сети, используемой для не более, чем двух лампочек, а для подключения электроплиты, холодильника или стиральной машины нужно выбирать устройство от 25 Ампер.

Как выбрать подходящий

Именно выдерживаемое дифференциальным автоматическим выключателем напряжение должно быть первым моментом, на который необходимо обратить внимание при покупке автомата.

Для этого достаточно посчитать нагрузку, которую оказывают на сеть все подключенные к определенной ветке приборы, розетки и освещение. После получения определенного значения подбираем устройство, обязательно добавив несколько ампер для запаса.

Далее алгоритм выбора модульных автоматических выключателей выглядит примерно так:

  • Проконсультироваться у консультанта в магазине.
  • Рассчитать сечение используемой проводки.
  • Определить предел для отключающейся способности (рекомендуется в 6000 Ампер).
  • Выбрать тип расцепителя (рекомендуется тип «С»).
  • Оценить вариант крепления (непосредственно на поверхность в щитке или на DIN-рейку).
  • Посмотреть на производителя (надежными признаны российские, германские, китайские).

Как грамотно монтировать

Разместить приобретенный автомат в щитке несложно: достаточно в зависимости от типа крепления зафиксировать его на плашке или закрепить на имеющейся рейке.

Подключить автовыключатель к существующей системе тоже не составит труда, если действовать по следующей схеме:

  • Отключить ток в щитке.
  • Проверить отсутствие напряжение индикаторной отверткой или мультметром.
  • Подсоединить нулевой провод к «нулю», а фазу к фазе.
  • При наличии заземления вывести еще один провод к устройству.
  • Проверить надежность фиксации.
  • Подать ток.
  • Если автомат сработал, следует повторить подключение.
Читать еще:  Выключатель автоматический трехполюсный 20а характеристики

Зная, какой автоматический выключатель выбрать, можно значительно сократить время пребывания в магазине и правильно подобрать наиболее подходящее устройство. Главное, заниматься монтажом только при наличии доступа к таким видам работ и соблюдать технику безопасности.

Практикум. Подбор защитного оборудования для сетей постоянного тока

Постоянный ток (DC — от англ DirectCurrent) — один из главных способов передачи и распределения электрической энергии. Сегодня он широко используется в следующих областях:

  • преобразование различных видов энергии в электрическую (например, фотогальванические станции);
  • транспорт (трамвайные линии, железные дороги и пр.);
  • питание систем аварийного предупреждения, а также систем собственных нужд;
  • промышленные установки (электролитические процессы и т.п.).

Сети постоянного тока довольно специфичны, поэтому для того, чтобы грамотно выбрать коммутационное оборудование, необходимо следовать определённой последовательности действий.

ШАГ 1. Определение топологии сети

Отключение постоянного тока связано с существенными трудностями при гашении дуги. Проблема обусловлена тем, что в системах постоянного тока отсутствует естественный переход кривой зависимости I(t) через ноль и необходимо принудительно снижать значение тока. Характер уменьшения указанной величины до нуля зависит от напряжения источника питания, параметров электроустановки и сопротивления, возникающего во время гашения дуги. Чем больше соединённых последовательно полюсов, тем выше сопротивление дуги, и больше максимальный коммутируемый ток короткого замыкания (КЗ). Для улучшения работы автоматических выключателей в условиях КЗ в зависимости от напряжения электроустановки и топологии сети необходимо использовать специальные комбинации соединения полюсов. Эта информация позволяет оценить возможные неисправности, после чего выбрать подходящий тип соединения полюсов выключателя с учётом характеристик электроустановки (ток КЗ, напряжение питания, номинальная величина нагрузки и т.д.).

Рассмотрим три основные системы распределения на постоянном токе.

1. Сеть, изолированная от земли (IT)


Рис. 1. Система IT постоянного тока

Описание. Все токоведущие части источника питания изолированы, открытые проводящие части заземлены.

Топологии повреждения Самая Опасная для IT неисправность — короткое замыкание между положительным и отрицательным полюсами.

Соединение полюсов оборудования. Зависит от напряжения источника питания и требуемой отключающей способности.

NB!

Возможность двойного замыкания на землю (первое — замыкание одного из полюсов со стороны источника питания, второе — замыкание другого полюса со стороны нагрузки) не рассматривается. Однако следует использовать устройство контроля изоляции сети относительно земли.

2. Сеть с одной заземлённой полярностью


Рис. 2. Система ТТ (слева) и TN-C-S (справа) постоянного тока
для сети с одной заземлённой полярностью

Описание. Один из полюсов сети соединён с землёй. Такой тип системы может привести к перенапряжениям вследствие статического электричества, стекающего через землю.

Топология повреждений. В данном случае основное повреждение — это короткое замыкание между двумя полярностями. Но необходимо брать в рассмотрение также замыкание между незаземлённой полярностью и землёй, поскольку ток может течь под полным напряжением.

Соединение полюсов оборудования. Зависит от напряжения источника питания и требуемой отключающей способности. Заземление должно быть осуществлено со стороны питания автоматического выключателя.

3. Сеть с заземлённой средней точкой источника питания


Рис. 4. Система ТТ (слева) и TN-C-S (справа) постоянного тока
для сети с заземлённой средней точкой

Описание. Средняя точка источника питания соединена с землёй. Основной недостаток данного соединения в сравнении с другими типами заключается в том, что замыкание между любой из полярностей и землёй вызывает ток с приложенным напряжением, равным половине напряжения питания.

Топология повреждений Основное повреждение, как и в предыдущем случае — короткое замыкание между двумя полярностями НО необходимо брать в рассмотрение также замыкание между полярностью И землёй, поскольку ток может течь под напряжением, равным U / 2.

Соединение полюсов оборудования. Необходимо устанавливать автоматические выключатели таким образом, чтобы на каждую полярность приходилось по два полюса автоматического выключателя. При возникновении короткого замыкания между двумя полюсами сети напряжение цепи равно номинальному, и такой сверхток отключается четырьмя последовательно соединёнными полюсами автоматического выключателя.

ШАГ 2. Электрические параметры

Для верного выбора защитного устройства в сети постоянного тока необходимо знать несколько электрических параметров, характерных для этого аппарата:

  1. Номинальное напряжение установки Un. Оно определяет рабочую величину Ue, которая зависит от соединения полюсов и проверяется соотношением Un ≤ Ue.
  2. Ток короткого замыкания в месте установки автоматического выключателя Ik. Он определяет исполнение автоматического выключателя (зависит от типоразмера и соединения полюсов) и проверяется выражением

  • Номинальный ток, потребляемый нагрузкой Ib. От данной величины зависит номинальный ток В термомагнитного или электронного расцепителя. Должно выполняться следующее соотношение: Ib≤In.
  • Словарь инженера
    Номинальное рабочее напряжение Ue – задаётся из стандартизированного ряда величин, определяющих уровень изоляции сети и электрооборудования.
    Номинальный непрерывный ток Iu – величина, которую оборудование может выдерживать в течение долгого времени работы.
    Номинальный ток автоматического выключателя In – определяет защитные характеристики аппарата в соответствии с возможными настройками расцепителя.
    Предельная отключающая способность автоматического выключателя Icu –максимальный ток КЗ, который аппарат способен отключить однократно при соответствующем номинальном рабочем напряжении, без гарантии сохранения работоспособности.
    Номинальная рабочая отключающая способность Ics – максимальный ток КЗ, который аппарат способен отключить три раза 1 при определённом рабочем напряжении (Ue) и определённой постоянной времени. После этого автоматический выключатель должен проводить номинальный ток.
    Номинальный кратковременно выдерживаемый ток КЗ – величина, которую автоматический выключатель способен проводить в замкнутом положении в течение определённого промежутка времени. Аппарат должен выдерживать данный ток в течение установленной временной задержки для обеспечения селективности между последовательно стоящими автоматическими выключателями.

    ШАГ 3. Обеспечение селективности

    Работа аппаратов защиты в цепях постоянного тока координируется путём постепенного повышения порогов токов и задержки срабатывания по мере приближения к источнику питания, то есть обеспечивается так называемая временная селективность. Нужно убедиться, что вышестоящие автоматические выключатели с задержкой срабатывания имеют значение кратковременно выдерживаемого тока, превышающее максимальную величину КЗ, которая может протекать в рассматриваемой части установки.

    Читать еще:  Подрулевой выключатель dacia logan 2014 8201167981

    «Временная селективность обычно реализуется в электроустановках на уровне вводных устройств и главных распределительных щитов (ГРЩ). Для реализации селективности на нижних уровнях электроустановок следует выбрать другой тип координации устройств защиты. Так, например, для аппаратов в литом корпусе серии Tmax XT и Tmax на постоянном токе можно реализовать энергетическую селективность, а для воздушных автоматических выключателей Emax DC осуществляется также и зонная селективность», — дополняет Игорь Мещеряков , менеджер по группе изделий компании АББ, лидера в производстве силового оборудования и технологий для электроэнергетики и автоматизации.

    Для обеспечения селективного срабатывания автоматических выключателей на постоянном токе необходимо:

    • построить времятоковые характеристики автоматических выключателей с термомагнитными и электронными расцепителями с учётом допусков и поправочных коэффициентов;
    • проанализировать построенные характеристики с точки зрения обеспечения функций защиты и селективного срабатывания;
    • составить карту уставок с учётом необходимых настроек расцепителей.

    В случае необходимости обеспечения высоких предельных токов селективности, подобрать выключатели в соответствие с указаниями таблиц координации.

    «Возможностей создать энергетическую систему с учётом требований по селективности на сегодняшний день более чем достаточно, — утверждает Игорь Мещеряков (АББ). — Современные электронные расцепители для постоянного тока, например, такие как PR122/DC — PR123/DC, обладают несколькими селективными задержками от короткого замыкания с обратнозависимой или фиксированной кратковременной задержкой срабатывания. Наличие широкого спектра встроенных защит (от замыкания на землю, превышения температуры, небаланса токов, колебаний напряжения, реверсирования мощности и др.) Позволяет осуществить функции, которые раньше были доступны только для электроустановок переменного тока».

    От теории к практике

    Пример 1. Рассмотрим выбор автоматического выключателя для сетей постоянного тока на примере автоматических выключателей в литом корпусе серии Tmax.

    Параметры установки:
    Тип сети: с одной заземлённой полярностью (только отрицательная)
    Напряжение установки: Un = 250 В постоянного Тока
    Номинальный ТОК, потребляемый нагрузкой: В = 450
    Ток короткого замыкания: 40 кА

    Для выбранного автоматического выключателя должны выполняться следующие условия:
    Ue ≥ Un
    Icu ≥ Ik
    In ≥ Ib

    Как правило, у производителей существуют таблицы для подбора аппаратов постоянного тока, ниже в примерах приведены необходимые выдержки из них.
    В соответствии с типом сети необходимо выбрать таблицу, относящуюся к сети с одной заземлённой полярностью (см. табл. 1).

    Табл. 1. Варианты соединения полюсов автоматических выключателей в литом корпусе Tmax для работы в сети с одной заземлённой полярностью (в рассматриваемых соединениях заземлена отрицательная полярность)

    * Заземление должно быть осуществлено со стороны питания автоматического выключателя

    Выбираем столбец с напряжением сети больше или равным напряжению электроустановки. Нужная строка подбирается по номинальному непрерывному току МЕ автоматического выключателя, который должен быть больше или равен току нагрузки. В соответствии с заданными в примере условиями следует выбирать автоматический выключатель Tmax Т5 c Iu=630A.

    Исполнение по отключающей способности (НШ и т.д.) определяется с учётом выполнения условия Icu>Ik. В данном случае можно выбрать исполнение S, так как Ik = 40 кА.

    Указанным требованиям удовлетворяют две схемы соединения полюсов, если должен отключаться заземлённый полюс сети, то следует выбрать следующий вариант:

    Среди номинальных токов, доступных для термомагнитного расцепителя выключателя T5S630, может быть выбран In = 500 A, поэтому допустимо применять трёхполюсный термомагнитный автоматический выключатель T5S630 TMA500. Аппарат использует два полюса, соединённых последовательно на изолированной полярности, и один — на заземлённой. При этом при выборе автоматического выключателя с термомагнитным расцепителем необходимо учитывать поправочный коэффициент срабатывания по КЗ. 2

    Пример 2. Рассмотрим выбор воздушного автоматического выключателя на примере серии Emax.

    Параметры установки:
    Тип сети: изолированная
    Напряжение установки: Un = 500 В постоянного Тока
    Номинальный ток, потребляемый нагрузкой: In = 1800 А
    ток короткого замыкания: 45кA

    Выбор автоматического выключателя

    В соответствии с типом сети необходимо выбрать таблицу, относящуюся к сети, изолированной от земли (см. табл. 2).

    Табл. 2. Соединение полюсов воздушных выключателей Emax для работы в изолированной сети

    Исходя из заданной величины номинального напряжения выбираем столбец Un ≤ 500 В. В нём наиболее подходящим по характеристикам тока короткого замыкания является автоматический выключатель E2N (N = 50 кА> IK), но если выбрать этот аппарат, не будет выполняться условие In ≥ Ib.

    Согласно таблице 3, относящейся к номинальному непрерывному току, необходимо выбрать автомат типа E3N, т.к. он имеет ток Iu = 2000 A (это значение соответствует In расцепителя) и только в этом случае выполняется соотношение In ≥ Ib.

    Табл. 3. Исполнения автоматических выключателей Emax для постоянного тока

    Выбран трёхполюсный автоматический выключатель E3N 2000 с расцепителем PR122-123/DC In = 2000A. В таблице 2 показано соединение между трёхполюсным выключателем, нагрузкой и источником питания:


    Стоит отметить, что правильный выбор аппаратов защиты для сетей постоянного тока возможен только в случае строгого соблюдения описанных выше рекомендаций. Важно помнить, что некорректно подобранный автоматический выключатель не только не выполнит свои прямые защитные функции, но и в случае неправильно рассчитанной отключающей способности может выйти из строя и оставить электроустановку полностью незащищённой.

    1 В соответствии с циклом отключений и включений (О-трет-СО-трет-CO).

    2 см. Техническая брошюра «Низковольтные автоматические выключатели АББ для применений на постоянном токе» стр. 33-34.

    0 0 голоса
    Рейтинг статьи
    Ссылка на основную публикацию
    ВсеИнструменты