Ivalt.ru

И-Вольт
9 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как рисуется выключатель нагрузки

Выключатели нагрузки

Выключатель нагрузки – это коммутационный аппарат, предназначенный для отключения тока номинального значения. Дугогасительное устройство этого коммутационного аппарата рассчитано на гашение дуги незначительной мощности, поэтому проводить отключение электрической нагрузки в режиме короткого замыкания с его помощью не рекомендуется. Эти устройства оснащаются специальным приводом, который может управляться вручную или дистанционно. Для электрических распределительных сетей номиналом 6 кВ и 10 кВ, выключателями нагрузки довольно часто именуют выключатели со способностью коммутировать токи менее 20 000А. Выключатели этого типа получили широкое распространение в городских и цеховых распределительных сетях, где защиту от токов короткого замыкания выполняют с помощью предохранителей, а коммутационные устройства используют для отключения и включения под номинальной нагрузкой.

Типы выключателей нагрузки

Гашение дуги в выключателях нагрузки происходит в специальной камере, которая может иметь различную конструкцию и принцип работы. В настоящее время различают следующие коммутационные аппараты:

  • вакуумные;
  • электромагнитные;
  • элегазовые;
  • автогазовые;
  • воздушные.

Автогазовый тип устройств является самым популярным на отечественном рынке. Он осуществляет гашение дуги за счет газа, который выделяется из стенок камеры под действием высокой температуры дуги. Воздушные выключатели используют для гашения дуги сжатый воздух, который накапливается за счет преобразования энергии отключающей пружины. Элегазовые устройства используют специальный технический газ SF6 с диэлектрическими свойствами, которым наполняют дугогасительную камеру. При отключении поток этого газа препятствует образованию дуги и последующему нагреву конструктивных элементов выключателя. В вакуумном устройстве разрыв контактов происходит в камере с вакуумом. По этой причине электрическая дуга практически не образовывается. В электромагнитном типе выключателей гашение электрической дуги происходит в результате растяжения дуги по разным камерам. Этого можно добиться с помощью быстрого хода контактов и использования подмагничивания образующейся дуги.

Выключатель нагрузки 6 кВ

Выключатель нагрузки 6 кВ – это одна из разновидностей выключателей нагрузки, предназначенных для эксплуатации в сетях с номинальным напряжением 6000В. Благодаря простоте конструкции и высокой надежности эксплуатации они получили широкое распространение, заменив традиционные автоматические выключатели. Главные достоинства выключателей нагрузки 6 кВ – это:

  • простая и надежная конструкция, проверенная многолетним опытом эксплуатации;
  • низкая стоимость по сравнению с другими типами выключателей;
  • возможность коммутации электрической цепи в нормальном режиме работы;
  • возможность работать в паре с предохранителями для защиты от токов короткого замыкания;
  • создание видимого разрыва между токопроводящими контактами, что обеспечивает возможность работы без оперирования разъединителем.

Выключатель нагрузки 10 кВ

Выключатель нагрузки 10 кВ отличается от аналогичного устройства с напряжением 6 кВ наличием дугогасящего устройства с большими габаритами камеры. Это вызвано необходимостью гашения дуги в более сложных условиях. Выключатели этого типа повсеместно используются в городских электрических сетях, где на первый план выходят вопросы простоты технического обслуживания и надежности эксплуатации. Невысокая стоимость в совокупности с простотой монтажа обеспечивают высокий уровень популярности данных коммутационных устройств.

Устройство и характеристики выключателей нагрузки

Конструкция выключателей нагрузки обеспечивает быстрый и простой ремонт или замену любой его части. Главными элементами этого коммутационного аппарата являются:

  • дугогасительная камера;
  • привод;
  • контактная система;
  • тяги;
  • заземляющие ножи.

Привод выключателей может иметь два основных принципа управления: ручной и дистанционный. Ручной привод предполагает оперирование устройством в ручном режиме в непосредственной близости от него. Дистанционный привод значительно повышает уровень безопасности человека благодаря осуществлению переключений на безопасном расстоянии.

Контактная система выключателя выполняется с учетом износа рабочего ресурса в процессе выполнения оперативных переключений. Конструктивно контактная система разделена на две основные части, подвижные и неподвижные контакты. Подвижные контакты связаны с приводом при помощи тяг, которые обеспечивают передачу механических усилий.

Заземляющие ножи присоединяют к раме выключателей при помощи специальных пластин. С помощью заземляющих ножей обеспечивается надежное заземление электроустановки. Вал тяги заземляющих ножей связан блокирующим устройством с приводом включения. Благодаря этому исключено включение заземления на работающий выключатель. При наличии двух отдельных приводов для оперирования заземлением и выключателем, они располагаются с противоположных сторон устройства.

Обозначения выключателей нагрузки

Маркировка выключателей осуществляется заводом изготовителем и выполняется в соответствии с общепринятыми правилами, где:

  • В – выключатель;
  • Н – нагрузки;
  • А – автогазовый (П – с пружинным приводом, М — модернизированный);
  • п – встроенные предохранители;
  • (Л) – левостороннее расположение привода;
  • (П) – правостороннее расположение привода;

Межполюсное расстояние:

  • 200 мм – нет символа;
  • 250 мм – 250.

10 (6) – номинальное напряжение, кВ;
400 (630) – номинальный ток, А;
Расположение заземляющих ножей:

  • без заземляющих ножей – нет символа;
  • заземляющие ножи со стороны подвижных контактов сверху – з;
  • заземляющие ножи со стороны неподвижных контактов сверху – зв;
  • заземляющие ножи с двух сторон – 2з;
  • заземляющие ножи расположены за предохранителями – зп.

УХЛ – климатическое исполнение;
1 (2,3) – категория размещения.

Как выбрать и где купить выключатель нагрузки

Выбор параметров выключателей полностью зависит от условий его эксплуатации и величины коммутируемой электрической нагрузки. Главные факторы, влияющие на выбор коммутационного устройства подобного типа – это:

  • номинальный и максимальный ток в нормальном режиме работы;
  • ток короткого замыкания;
  • необходимость защиты от короткого замыкания;
  • необходимость наличия заземляющих ножей;
  • возможность дистанционного управления;
  • категория размещения и климатические условия эксплуатации.

Холдинг «ЭЗОИС-ЭлектроЩит» осуществляет продажи выключателей нагрузки в широком ассортименте изделий различного типа и нагрузки. Мы предлагаем купить выключатель нагрузки в соответствии с требуемой конфигурацией электрической сети. Квалифицированные менеджеры компании помогут правильно подобрать коммутационное устройство с учетом всех особенностей монтажа и эксплуатации. Вся продукция компании имеет сертификаты соответствия качества международного и отечественного образца. Для всех наших клиентов доступны услуги сервисного обслуживания выключателей профессиональными специалистами. Компания «ЭЗОИС-ЭлектроЩит» гарантирует длительную и безаварийную работу выключателей при выполнении своевременного технического обслуживания и требований инструкции по эксплуатации.

Условные графические обозначения на электрических схемах

Электростанции (ЭС) и подстанции (ПС) — обозначения без конкретизации конструктивного исполнения (при необходимости различения действующих и проектируемых объектов в первом случае применяется штриховка), ГОСТ 2.748—68: а — ЭС, общее обозначение; б — ЭС тепловая; в — ЭС паротурбинная на твердом топливе; г —ТЭЦ на твердом топливе; д -АЭС; е — ГЭС; ж -ГАЭС; з — ЭС геотермальная; и — ПС, общее обозначение; к — ПС трансформаторная; л — ПС выпрямительная

ПС с указанием вида установки, ГОСТ 2.748-68*:
а —открытая; б —закрытая; в — подземная; г — полуподземная; д — передвижная

Машины электрические, ГОСТ 2.722—68*: а — генератор трехфазный, общее обозначение; б — двигатель трехфазный с соединением обмоток статора в звезду, общее обозначение; в — асинхронный двигатель с короткозамкнутым ротором, общее обозначение; г — генератор постоянного тока с независимым возбуждением (два варианта изображения); д — то же с последовательным; е — то же с параллельным; ж — то же со смешанным; з — двигатель постоянного тока реверсивный с двумя последовательными обмотками возбуждения

Трансформаторы и автотрансформаторы, ГОСТ 2.723-68*:
а — трансформатор со ступенчатым регулированием; б — автотрансформатор с третичной обмоткой в однофазном изображении; в — трансформатор с ферромагнитным магнитопроводом однофазный (два варианта изображения); г — то же трансформатор трехфазный со схемой обмоток звезда— звезда с выведенной нейтралью; д — то же, со схемой звезда — треугольник; е — трансформатор однофазный с ферромагнитным магнитопроводом и управляющей обмоткой

Катушки индуктивности, трансформаторы тока, ГОСТ 2.723 — 68*:
а — общее обозначение, если требуется, начало обмотки обозначается точкой; б — дроссель с ферромагнитным магнитопроводом; в —катушка индуктивности с магнитодиэлектрическим магнитопроводом; г — катушка индуктивности со скользящим контактом и отводом; д — трансформатор тока с одной вторичной обмоткой (два варианта изображения); е — трансформатор тока быстронасыщающийся; ж — реактор

Коммутационные устройства высокого напряжения, ГОСТ 2.755 — 74*:
а — разъединитель однополюсный; б — выключатель-разъединитель однополюсный ; в — разъединитель трехполюсный; г — выключатель-разъединитель трехполюсный ; д, е — выключатель трехполюсный (два варианта изображения)

Предохранителе ГОСТ 2.727 — 68*: а — плавкий, общее обозначение; б — инерционноплавкий; в — тугоплавкий; г — быстродействующий; д — катушка термическая (предохранительная); е — пробивной; ж — с общей цепью сигнализации; з — выключатель-предохранитель; и — разъединитель-предохранитель

Разрядники, ГОСТ 2.727 — 68*: а — общее обозначение; б — трубчатый; в — вентильный; г — шаровой; д — роговой; е — искровой промежуток двухэлектродный, общее обозначение; ж — угольный; з — вакуумный

Читать еще:  Вгпм2 10 пакетный выключатель

Некоторые однолинейные обозначения аппаратов высокого напряжения, не предусмотренные стандартами ЕСКД, но принятые практикой:
а — выключатель; б — реактор сдвоенный; в — отделитель; г — короткозамыкатель

Провода, кабели и шины, ГОСТ 2.751-73*:
а — общее обозначение линии связи, провода, кабели, шины (групповое обозначение чертится толще других); б — пересечение линий без соединения; в — ответвления; г — однолинейное обозначение группы из п линий; д, е — примеры графического слияния линий электросвязи в групповую линию; ж — линия экранирования: з — экранирование группы элементов; и — экранированная линия связи; к — группа из пяти линий связи в общем экране

Заземления, соединения, повреждения проводов, кабелей и шин, ГОСТ 2.751—73*: а — заземление; б —соединение с корпусом; в — повреждение на землю, на корпус;
г— повреждение изоляции между проводами; д — графическое пересечение проводов учетом их взаимного расположения верхний провод обозначается полуокружностью); е — примеры подключения проводов к одной точке; ж — шина с ответвлением и двумя отводами (отпайками); з, и — однолинейное и многолинейное изображения группы из трех скрученных проводов; к —обрыв линии (на месте знака х указываются данные о продолжении пинии на схеме)

Обозначения общего применения, ГОСТ 2.721-74*:
а — поток электромагнитной энергии, сигнал электрический (в одном направлении, в обоих направлениях неодновременно, в обоих одновременно); б — то же для жидкостей (при незачерненном треугольнике — для газа); в — движение прямолинейное одностороннее, возвратное, с ограничением; г — движение вращательное одностороннее, возвратное, на угол 45°; д — регулирование линейное, общее обозначение, и ступенчатое (пять ступеней); е — регулирование нелинейное и подстроечное

Приводы коммутационных аппаратов, ГОСТ 2.721-74*:
а — ручной, общее обозначение (два варианта ); б — пневматический; в — электромашинный; г — тормоз

Источники тока, ГОСТ 2.742 — 68* и 2.750-68:
а — элемент гальванический или аккумуляторный; б — батарея аккумуляторная с отводом; в — то же с одинарным элементным коммутатором; г — обозначение рода тока; постоянный, переменный, пульсирующий; д — полярность: положительная, отрицательная

Электроизмерительные приборы, ГОСТ г.729 — 68*:
а — показывающий вольтметр; б —регистрирующий вольтметр; в — интегрирующий прибор (счетчик); г — амперметр с цифровым отсчетом; д — осциллограф

Обмотки электромеханических устройств (пускатели, электромагниты, реле), ГОСТ 2.756 — 76*:
а — общее обозначение (два варианта); б — с одной обмоткой; в — с двумя обмотками (два варианта); г — отдельная обмотка катушки с несколькими обмотками при разнесении на схеме; д — сп обмотками; е — с двумя встречными обмотками; ж — с двумя встречными одинаковыми обмотками (бифилярные); з — с одним отводом; и — трехфазная; к — пример уточняющих указаний в основном графическом поле: обмотка реле максимального тока; л — примеры уточняющих указаний в дополнительном графическом поле: обмотка реле переменного тока, обмотка реле напряжения; м — обмотка теплового реле

Контакты коммутационных устройств, общие обозначения, ГОСТ 2.755 — 74*: а — замыкающий; б — размыкающий (два варианта изображения); в — переключающий (три варианта); г — переключающий без размыкания цепи; д — переключающий со средним положением; е — с двойным замыканием; ж — с двойным размыканием; з, и — замыкающий и размыкающий с механическими связями (два варианта)

Контакты коммутационных устройств замыкающие, ГОСТ 2.755 — 74*: а — с замедлением при срабатывании; б —с замедлением при возврате; в —с замедлением при срабатывании и возврате; г — без самовозврата; д — с самовозвратом; е — импульсные (замыкающие при срабатывании, при возврате, при срабатывании и возврате); ж — для сильноточной цепи; з — дугогасительный; и — теплового реле

Контакты коммутационных устройств импульсные размыкающие, ГОСТ 2.755-74*:
а — при срабатывании; б — при возврате; в — при срабатывании и возврате

Примеры обозначений коммутационных устройств в сборе, ГОСТ 2.755—74*: а — реле электромагнитное с тремя контактами: замыкающим, размыкающим и переключающим; б, в — трехполюсные выключатели : путевой и с возвратом при перегрузке; г — трехполюсный переключатель

Выключатели кнопочные с самовозвратом, ГОСТ 2.755-74*: а, б — с контактами замыкающим и размыкающим нажимной; в, г — то же вытяжной; д, е — то же поворотный

Выключатели кнопочные без самовозврата, ГОСТ 2.755 — 74*: а — с возвратом вытягиванием кнопки; б —то же вторичным нажатием; в — то же нажатием специальной кнопки (сброс)

Контактные соединения, ГОСТ 2.755—74*: а — разъемное, штырь; б — то же, гнездо; в — то же, в сборе; г — разъемное, проходное; д — разборное, контакт; е — неразборное, контакт; ж — перемычка коммутационная на размыкание; з — то же с выведенным штырем; и — перемычка коммутационная на переключение; к — скользящий контакт

Резисторы постоянные и терморезисторы, ГОСТ 2.728-74*:
а — общее обозначение; б — с номинальной мощностью рассеяния 0,05 Вт; в — 0,125 Вт; г — 0,25 Вт; д — 0,5 Вт; е — 1,0 Вт; ж — 2,0 Вт; з — 5,0 Вт; и — шунт измерительный; к — элемент нагревательный; л, м — терморезисторы прямого и косвенного подогрева

Резисторы переменные, ГОСТ 2.728 — 74*: а — общее обозначение (два варианта); б — с нелинейной регулировкой; в, г — с двумя подвижными механически не связанными и связанными контактами; д — подстроечный; е — переменный с подстройкой; ж — с двумя дополнительными отводами

Конденсаторы, ГОСТ 2.728 — 74*: а — постоянной емкости; б — переменной емкости; в — подстроечный; г — электролитический поляризованный; д — то же неполяризованный; е — проходной; ж — опорный ; з — вариконд

Полупроводниковые приборы, ГОСТ
2.730-73*:
а — диод, общее обозначение; б— туннельный диод; в, г — стабилитрон односторонний,-двусторонний; д — варикап; е — диодный тиристор (динистор); ж — тиристор -Триодный, запираемый в обратном направлении с управлением по катоду; з — то же, по аноду; и — датчик Холла; к — диод щетки

Транзисторы, приборы излучающие и фоточувствительные, ГОСТ 2.730 — 73*: а — транзистор типа PNP; б — лавинный транзистор типа NPN; в — полевой транзистор с каналом TV-типа; г — то же P-типа, д — фотодиод; е — светодиод; ж — фоторезистор, общее обозначение; з — солнечный фотоэлемент

Выпрямительные схемы, ГОСТ 2.730 -73*: а — однофазная мостовая, развернутое изображение; б — то же, упрощенное изображение; в — трехфазная мостовая

Приборы электровакуумные, ГОСТ 2.731-81:
а — диод прямого накала; б — триод с катодом косвенного накала; в — тиратрон; г — лампа тлеющего разряда (например, неоновая); д — стабилитрон; е — вентиль ртутный управляемый; ж — трубка электронно-лучевая двуханодная, упрощенное обозначение

Линии электроснабжения и связи, виды прокладки, СТ СЭВ 160—75: а — воздушная на опорах; б —наземная; в — подземная; г — подводная

Линии электроснабжения и связи, опоры ВЛ, СТ СЭВ 160-75: а — общее обозначение и для круглого сечения; б — для квадратного и прямоугольного; в — с одним и двумя пасынками; г — с оттяжкой и с поддержкой; д — промежуточная; е — А-образная; ж — портальная

Линии электроснабжения и связи, элементы и конструкции ВЛ, СТ СЭВ 160— 75: я —подвес промежуточный двойной; б — подвес провода (кабеля) на тросе; в — провод (кабель) самонесущий; г — транспозиция провода на опоре, в пролете; д — гаситель вибраций; е — батарея конденсаторов в пролете; ж — разъединитель на опоре; з — разрядник на опоре, общее обозначение; и — молниеотвод на опоре; к — светильник на опоре

Линии электроснабжения и связи, элементы и защита подземных, подводных линий, Стандарт СЭВ 160—75: а — муфты концевые: прямая, ответвительная; б — муфты: линейная (соединительная), линейная повышенной надежности и ответвительная; в —прикрытие, общее обозначение; г, з —прикрытие кирпичом, черепицей, бетонными плитами, профилированной сталью, фольгой из пластмассы; и — канализация в трубе, в и трубах; к — канализация в кабельном блоке с тремя отверстиями; с 9 отверстиями; л — канализация в открытом, закрытом кабельных каналах; м — канализация в кабельном туннеле; н — анод защитный

Читать еще:  Выключатель противотуманных фар ford focus

Примечания: 1. В таблице приведены обозначения лишь наиболее употребительных видов оборудования и, как правило, только основные варианты обозначения.
2. Допускается выполнять графические обозначения в зеркальном изображении

Условные обозначения в электрических схемах.

Для полного понимания происходящих в цепи процессов необходимо уметь правильно читать электрические схемы. Для этого надо знать условные обозначения. С 1986 года вступил в силу стандарт, который во многом убрал разночтения в обозначениях, имеющиеся между европейскими и российскими ГОСТами. Теперь электрическую схему из Финляндии может прочитать электрик из Милана и Москвы, Барселоны и Владивостока.
В электрических схемах встречаются два вида обозначений: графические и буквенные.
Буквенные коды наиболее распространенных видов элементов представлены в таблице № 2:
ТАБЛИЦА № 2

AУстройстваУсилители, приборы телеуправления, лазеры…
BПреобразователи неэлектрических величин в электрические и наоборот (кроме источников питания), датчикиГромкоговорители, микрофоны, чувствительные термоэлектрические элементы, детекторы ионизирующих излучений, сельсины.
CКонденсаторы.
DИнтегральные микросхемы, микросборки.Устройства памяти, логические элементы.
EРазные элементы.Осветительные устройства, нагревательные элементы.
FРазрядники, предохранители, защитные устройства.Элементы защиты по току и напряжению, плавкие предохранители.
GГенераторы, источники питания.Батареи, аккумуляторы, электрохимические и электротермические источники.
HИндикационные и сигнальные устройства.Приборы звуковой и световой сигнализации, индикаторы.
KРеле контакторы, пускатели.Реле токовые и напряжения, тепловые, времени, магнитные пускатели.
LКатушки индуктивности, дроссели.Дроссели люминесцентного освещения.
MДвигатели.Двигатели постоянного и переменного тока.
PПриборы, измерительное оборудование.Показывающие и регистрирующие и измерительные приборы, счетчики, часы.
QВыключатели и разъединители в силовых схемах.Разъединители, короткозамыкатли, автоматические выключатели (силовые)
RРезисторы.Переменные резисторы, потенциометры, варисторы, терморезисторы.
SКоммутационные устройства в цепях управления, сигнализации и измерительных.Выключатели, переключатели, выключатели, срабатывающие от различных воздействий.
TТрансформаторы, автотрансформаторы.Трансформаторы тока и напряжения, стабилизаторы.
UПреобразователи электрических величин.Модуляторы, демодуляторы, выпрямители, инверторы, преобразователи частоты.
VЭлектровакуумные, полупроводниковые приборы.Электронные лампы, диоды, транзисторы, диоды, тиристоры, стабилитроны.
WЛинии и элементы сверхвысокой частоты, антенны.Волноводы, диполи, антенны.
XКонтактные соединения.Штыри, гнезда, разборные соединения, токосъемники.
YМеханические устройства.Электромагнитные муфты, тормоза, патроны.
ZОконечные устройства, фильтры, ограничители.Линии моделирования, кварцевые фильтры.

Условные графические обозначения представлены в таблицах № 3 — № 6. Провода на схемах обозначаются прямыми линиями.
Одним из основных требований при составлении схем является простота их восприятия. Электрик, при взгляде на схему должен понять, как устроена цепь и как действует тот или иной элемент этой цепи.
ТАБЛИЦА № 3. Условные обозначения контактных соединений

Разъемные-
неразъемные, разборные
неразъемные, неразборные

Место контакта или присоединения может располагаться на любом участке провода от одного разрыва до другого.

ТАБЛИЦА №4. Условные обозначения включателей, выключателей, разъединителей.

замыкающийразмыкающий
Однополюсный выключатель
Однополюсный разъединитель
Трехполюсный выключатель
Трехполюсный разъединитель
Трехполюсный разъединитель с автоматическим возвратом (сленговое название — «АВТОМАТ»)
Однополюсный разъединитель с автоматическим возвратом
Нажимной выключатель (т.н. — «КНОПКА»)
Вытяжной выключатель
Выключатель с возвратом при повторном нажатии кнопки (можно встретить в настольных или настенных светильниках)
Путевой однополюсный выключатель (также известен под именем «концевой» или «конечник»)

Вертикальные линии, пересекающие подвижные контакты, говорят, что все три контакта замыкаются (или размыкаются) одновременно от одного воздействия.
При рассмотрении схемы необходимо учитывать то, что некоторые элементы цепи чертятся одинаково, но их буквенное обозначение будет отличаться (например, контакт реле и выключатель).

ТАБЛИЦА № 5. Обозначение контактов реле контакторов

замыкающиеразмыкающие
обычные
с замедлением при срабатывании
с замедлением при возврате
с замедлением при срабатывании и при возврате

ТАБЛИЦА № 6.Полупроводниковые приборы

Диод
Стабилитрон
Тиристор
Фотодиод
Светодиод
Фоторезистор
Солнечный фотоэлемент
Транзистор
Конденсатор
Дроссель
Сопротивление

Электрические машины постоянного тока –

Асинхронные трехфазные электрические машины переменного тока –

В зависимости от буквенного обозначения эти машины будут, либо генератором, либо двигателем.
При маркировке электрических цепей соблюдают следующие требования:

1. Участки цепи, разделенные контактами аппаратов, обмотками реле, приборов, машин и другими элементами, маркируют по-разному.

2. Участки цепи, проходящие через разъемные, разборные или неразборные контактные соединения, маркируют одинаково.

3. В трехфазных цепях переменного тока фазы маркируют: «А», «В», «С», в двухфазных – «А», «В»; «В», «С»; «С», «А», а в однофазных – «А»; «В»; «С». Ноль обозначают буквой – «О».

4. Участки цепей положительной полярности маркируют нечетными числами, а отрицательной полярности – четными.

5. Рядом с условным обозначением силового оборудования на чертежах планов дробью указывают номер оборудования по плану (в числителе) и его мощность (в знаменателе), а у светильников – мощность (в числителе) и высоту установки в метрах (в знаменателе).

Необходимо понимать, что все электрические схемы показывают состояние элементов в исходном состоянии, т.е. в тот момент, когда в цепи отсутствует ток.

Назначение электрического оборудования распределительных устройств

Рис.1. Однолинейная схема электростанции средней мощности с РУ 10 и 110 кВ:
G — генератор; Т — трансформатор; Q — выключатель;
QB — выключатель секционный; QS — разъединитель;
LR — токоограничивающий реактор; F — разрядник;
W — линия электропередачи

Назначение электрического оборудования первичных цепей

Назначение аппаратов и других элементов РУ удобно рассмотреть применительно к схеме конкретной установки (рис.1). Как видно из схемы, в каждом присоединении предусмотрены выключатели и соответствующие разъединители.

Выключатели

Выключатели Q являются важнейшими коммутационными аппаратами. Они предназначены для включения, отключения и повторного включения электрических присоединений. Эти операции выключатели должны совершать в нормальном режиме, а также при коротких замыканиях (КЗ), когда ток превосходит нормальное значение в десятки и сотни раз. Выключатели снабжены приводами для неавтоматического и автоматического управления. Под неавтоматической операцией включения или отключения понимают операцию, совершаемую человеком, который замыкает цепь управления привода выключателя особым ключом обычно на расстоянии, т.е. дистанционно. Автоматическое включение и отключение происходит без вмешательства человека с помощью автоматических устройств, замыкающих те же цепи управления.

Выключатели предусмотрены также в сборных шинах. Эти выключатели называют секционными QB. В РУ станций секционные выключатели при нормальной работе обычно замкнуты. Они должны автоматически размыкаться только в случае повреждения в зоне сборных шин. Вместе с ними должны размыкаться и другие выключатели поврежденной секции. Таким образом поврежденная часть РУ будет отключена, а остальная часть останется в работе.

При наличии достаточного резерва в источниках энергии и линиях электроснабжение не будет нарушено.

Разъединители

Разъединители QS имеют основное назначение — изолировать (отделять) на время ремонта в целях безопасности электрические машины, трансформаторы, линии, аппараты и другие элементы системы от смежных частей, находящихся под напряжением. Разъединители способны размыкать электрическую цепь только при отсутствии в ней тока или при весьма малом токе, например токе намагничивания небольшого трансформатора или емкостном токе непротяженной линии.

В отличие от выключателей разъединители в отключенном положении образуют видимый разрыв цепи. Как правило, их снабжают приводами для ручного управления. Операции с разъединителями и выключателями должны производиться в строго определенном порядке. При отключении цепи необходимо сначала отключить выключатель и после этого отключить разъединители, предварительно убедившись в том, что выключатель отключен. При включении цепи операции с выключателем и разъединителями должны быть выполнены в обратном порядке. Таким образом, замыкание и размыкание цепи с током совершает выключатель. Разъединители образуют дополнительные изолирующие промежутки в цепи, предварительно отключенной выключателем.

Разъединители размещают так, чтобы любой аппарат или любая часть РУ могли быть изолированы для безопасного доступа и ремонта. Так, например, в каждой линейной цепи должны быть предусмотрены два разъединителя — шинный или линейный, с помощью которых выключатели могут быть изолированы от сборных шин и от сети. В цепи генератора достаточно иметь только шинный разъединитель, обеспечивающий безопасный ремонт генератора и выключателя; при этом генератор должен быть отключен и остановлен. Для ремонта двухобмоточных трансформаторов и соответствующих выключателей достаточно иметь шинные разъединители со стороны высшего и низшего напряжений.

Заземляющие устройства

Для безопасной работы в РУ и в сети недостаточно изолировать рабочее место от смежных частей, находящихся под напряжением. Необходимо также заземлить участок системы, подлежащий ремонту. Для этого у разъединителей предусматривают заземляющие ножи, с помощью которых участок, изолированный для ремонта, может быть заземлен с обеих сторон, т.е. соединен с заземляющим устройством установки, потенциал которого близок к нулю. Заземляющие ножи снабжают отдельными приводами. Нормально заземляющие ножи отключены. Их включают при подготовке рабочего места для ремонта после отключения выключателей и разъединителей и проверки отсутствия напряжения.

Читать еще:  Выключатель таймер 220 вольт

Использование разъединителей не ограничивается изоляцией отключенных частей системы в целях безопасности при ремонтах. В РУ с двумя системами сборных шин разъединители используют также для переключений присоединений с одной системы сборных шин на другую без разрыва тока в цепях.

Токоограничивающие реакторы

Токоограничивающие реакторы LR представляют собой индуктивные сопротивления, предназначенные для ограничения тока КЗ в защищаемой зоне. В зависимости от места включения различают реакторы линейные и секционные.

Измерительные трансформаторы тока

Измерительные трансформаторы тока ТА предназначены для преобразования тока до значений, удобных для измерений. В присоединениях генераторов, силовых трансформаторов, линий со сложными видами защиты необходимы два-три комплекта трансформаторов тока.

Измерительные трансформаторы напряжения

Измерительные трансформаторы напряжения TV предназначены для преобразования напряжения до значений, удобных для измерений. Трансформаторы напряжения присоединяют к сборным шинам станций; их предусматривают также в присоединениях генераторов, трансформаторов и линий.

На принципиальных схемах измерительные трансформаторы обычно не показывают.

Вентильные разрядники

Вентильные разрядники F, а также ограничители перенапряжений предназначены для защиты изоляции электрического оборудования от атмосферных перенапряжений. Они должны быть установлены у трансформаторов, а также у вводов воздушных линий в РУ.

Токопроводы

Токопроводы представляют собой относительно короткие электрические линии (как правило, от нескольких метров до нескольких сотен метров) с жесткими или гибкими проводниками, укрепленными на опорных или подвесных изоляторах, предназначенные для соединения электрических машин, трансформаторов и электрических аппаратов в пределах станции, подстанции, распределительного устройства.

Требования, предъявляемые к электрическому оборудованию и токопроводам

Требования, предъявляемые к электрическому оборудованию и токопроводам, заключаются в следующем.

  • Изоляция оборудования должна обладать достаточной электрической прочностью, чтобы противостоять наибольшему рабочему напряжению, а также коммутационным и атмосферным перенапряжениям.
  • Оборудование и проводники должны:
    • проводить в течение неограниченного времени наибольшие рабочие токи соответствующих присоединений; при этом температура в наиболее нагретых точках не должна превышать нормированные значения для продолжительного режима;
    • выдерживать тепловое и механическое действия токов КЗ, т.е. обладать достаточной термической и электродинамической стойкостью;
    • быть экономичными и надежными в эксплуатации, т.е. вероятность повреждений должна быть мала, а требования к уходу и ремонту минимальными;
    • быть безопасными для лиц, обслуживающих установку.

Кроме перечисленных общих требований, к электрическому оборудованию предъявляют ряд частных требований в соответствии с назначением и условиями работы оборудования.

Номинальные параметры электрического оборудования — это параметры, определяющие свойства электрического оборудования, например номинальное напряжение, номинальный ток и многие другие. Номинальные параметры назначают заводы-изготовители. Они указываются в каталогах, справочниках, на щитках оборудования. При проектировании установки и выборе оборудования номинальные параметры сопоставляют с соответствующими расчетными значениями напряжений и токов, чтобы убедиться в пригодности оборудования для работы в нормальных и анормальных условиях. Ограничимся здесь лишь определением понятия номинального напряжения электрической сети и электрического оборудования.

Номинальное напряжение — это базисное напряжение из стандартизованного ряда напряжений, определяющее уровень изоляции сети и электрического оборудования. Действительные напряжения в различных точках системы могут несколько отличаться от номинального, однако они не должны превышать наибольшие рабочие напряжения, установленные для продолжительной работы:

Номинальное междуфазное напряжение, действующее значение, кВ. 3..6..10..20..35..110

Наибольшее рабочее напряжение, действующее значение, кВ. 3,5..6,9..11,5..23..40,5

Номинальное междуфазное напряжение. действующее значение, кВ. 150..220..330..500..750..1150

Наибольшее рабочее напряжение, действующее значение, кВ. 172..252..363..525..787..1210

Для сетей с номинальным напряжением 220 кВ включительно наибольшее рабочее напряжение принято равным 1,15 номинального; для сетей с номинальным напряжением 330 кВ — 1,1 номинального и для сетей 500 кВ и выше — 1,05 номинального. Электрическое оборудование должно быть рассчитано на продолжительную работу при указанных напряжениях.

Изоляция электрического оборудования должна также противостоять перенапряжениям, т.е. кратковременному действию напряжений, превышающих наибольшее рабочее напряжение. Различают перенапряжения коммутационные и атмосферные.

Аппараты вторичных цепей. Релейная защита и элементы системной автоматики

Автоматические устройства, в частности релейная защита, необходимы там, где требуется быстрая реакция на изменение режима работы и немедленная команда на отключение или включение соответствующих цепей. Так, например, при КЗ, когда ток в ряде цепей резко увеличивается, необходимо немедленно отключить поврежденный участок системы, чтобы но возможности уменьшить размеры разрушения и не помешать работе смежных неповрежденных цепей. Такая команда может быть подана только автоматическим устройством, реагирующим на изменение тока, направление мощности и другие факторы и замыкающим цепи управления соответствующих выключателей.

Автоматическое отключение элементов системы, должно быть избирательным (селективным). Это означает, что в случае повреждения в любой цени отключению подлежит только поврежденная цепь ближайшими к месту повреждения выключателями. Работа остальной части системы не должна быть нарушена. Так, например, при замыкании в точке К1 (рис.2) ток проходит по цепям генераторов, повышающих трансформаторов, поврежденной и неповрежденной линий. Однако отключению подлежит только поврежденная линия с обеих сторон. Связь станции с системой сохранится по другой линии.

В случае повреждения генератора или трансформатора отключению подлежит только поврежденный элемент. На рис.2 участки системы, подлежащие отключению в случае их повреждения, разграничены пунктирными линиями. Каждый участок отключается одним или двумя выключателями. В случае повреждения выключателя отключению подлежат два смежных участка.

Рис.2. Электрическая схема станции и участка сети
Пунктирные линии разграничивают участки станции и сети,
подлежащие отключению в случае их повреждения

Избирательность релейной защиты обеспечивают различными способами, например соответствующим выбором времени или тока срабатывания защит смежных участков сети, применением реле, реагирующих на направление мощности, и др.

Время отключения цепи при КЗ слагается из времени срабатывания релейной защиты и времени отключения выключателя, исчисляемого от момента подачи команды на отключение до момента погасания дуги в разрывах выключателя.

Время отключения основных линий системы стремятся по возможности уменьшить, чтобы не нарушить устойчивости параллельной работы электростанций. Время отключения новейших выключателей составляет два периода и время релейной защиты еще 0,5 периода. Полное время отключения составляет таким образом 2,5 периода. Для распределительных сетей 2,5-периодное отключение не требуется. Здесь применяют более простые защиты и менее быстродействующие выключатели, стоимость которых значительно ниже. Полное время отключения составляет несколько десятых долей секунды и более.

Автоматическое повторное включение

Автоматические устройства для повторного включения (АПВ) воздушных линий после отключения их защитой имеют назначение быстро восстановить работу линии после отключения. Эффективность повторного включения воздушных линий основана на том, что большая часть замыканий связана с грозовыми разрядами и приводит к перекрытию изоляторов по поверхности. После автоматического отключения линии электрическая прочность воздушного промежутка быстро восстанавливается и при повторном включении линия остается в работе.

Первоначально команда на повторное включение подавалась вручную дежурным на щите управления. Позднее операцию включения стали автоматизировать. В настоящее время автоматическое повторное включение, однократное и двукратное, получило широкое применение. Оно способствует повышению надежности электроснабжения, в особенности при питании потребителей по одиночным линиям.

Полное время автоматического повторного включения исчисляется от подачи команды релейной защиты на отключение выключателя до повторного замыкания его контактов. Оно должно быть возможно малым, чтобы не нарушать работу потребителей, но в то же время достаточным для деионизации дугового промежутка в месте перекрытия. Время повторного включения зависит от напряжения сети и быстродействия выключателя. В устройствах двукратного повторного включения для первого включения выбирают минимальное время из условия деионизации дугового промежутка. Если первое включение оказывается неуспешным и линия отключается вновь, происходит второе включение с интервалом в несколько секунд.

Автоматический ввод резерва

Автоматические устройства для включении резервной цепи (АВР) должны автоматически включать резервный трансформатор или резервный агрегат взамен отключенного защитой, а также автоматически подключать секцию сборных шин (с соответствующей нагрузкой), потерявшую питание, к соседней секции, обеспеченной питанием, с целью быстрого восстановления электроснабжения. Перерыв в подаче энергии должен быть относительно невелик, не более 0,5 с, чтобы электродвигатели, потерявшие питание, не успели остановиться, а после восстановления питания могли быстро войти в нормальный режим работы.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector