Ivalt.ru

И-Вольт
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как построить характеристику автоматического выключателя

Автоматические выключатели и УЗО

Выключатель автоматический (ВА), аппарат защиты или коммутационный аппарат — это аппарат, автоматически выключающий защищаемую им электрическую цепь при несоответствующих режимах. А конкретно: перегрузке линии, коротком замыкании. Иными словами, сохраняет подключенное оборудование и проводку, если правильно подобран по характеристикам.

Технические характеристики автоматов

1. Номинальный ток

Предельная величина тока, до которой ВА не будет отключаться.

Чем выше температура воздуха, тем быстрее отключится автомат при превышении нагрузки.

Номинальный ток In, А-40°-30°-20°-10°10°20°30°40°50°
11.351,31,251.201,151,11,0510,930,88
22,72,62,52,42,32,22,121,91,8
34,053,93,753.603,453,33,1532,82,6
45,45,254,84,64,44,243.703,5
56,756,56,2565,755.505.2554,74,5
68.107,87,57,26,96,66,365.605.30
811,210,6109,69,28,88,487,47
1013,51312,51211,51110,5109,38,8
1317,71716,315,61514 3013.70131211,4
1621,620,82019,218,417.6016,81614,914
20272625242322212018,617.60
2533,932,631,33028,827,526,32523,222
3243,241,64038,436,835,233,63230.0028,2
40545250484644424037,235,2
5067,56562,56057.505552,55046,544
63858278,875,672,569,366,26358,655,4

Как видно из графика, автомат должен работать “по номиналу” при температуре 30°.

2. Время-токовые характеристики отключения

Быстрота срабатывания при мгновенных перегрузках. Или по-простому: при включении пылесоса (холодильника, компрессора, электродвигателя и т.п.) возникает кратковременный огромный пусковой ток, если стоит ВА с неправильно подобранной время-токовой характеристикой, то он будет постоянно отключаться.

Данные графики характеризуют скорость срабатывания защиты при перегрузе. То есть при незначительном превышении номинального тока (I/In) скорость срабатывания низкая. Соответственно при увеличении нагрузки автомат быстрее сработает (отключится). Скорость срабатывания также зависит от характеристики.

3. Номинальное напряжение

Предельное напряжение постоянного или переменного тока, на которое рассчитан выключатель.

4. Номинальный ток отключения

Ток короткого замыкания (КЗ), при котором автоматический выключатель отключит отходящую линию и останется в работоспособном состоянии.

5. Класс токоограничения

Быстрота отключения в случае КЗ

6. Количество полюсов

Необходимое количество отключаемых проводов.

Пример ВА

Выбираем данный автоматический выключатель для медного проводника D=1,5 мм 2 , выдерживающий 19 А. Максимальная подключаемая нагрузка – до 2,3 кВт.

Теперь тонкости. Автоматический выключатель отключается через час при токе I=1,13Iн, в данном случае 11,3 А и через 40 секунд I=1,45Iн, в данном случае 14,5 А.

Теперь сухие цифры:

  • провод D=1,5 мм 2 , а автоматический выключатель 16А. ВА сработает через час, если нагрузка будет 18А и через 40 секунд, если 23,2А. Проводник выдерживает 19А (производства ГОСТ, ТУ производства меньше держат).
  • провод D=2,5 мм 2 , а автоматический выключатель 25А. ВА сработает через час, если нагрузка будет 28,2А и через 40 секунд, если 36,2А. Проводник выдерживает 27А (производства ГОСТ, ТУ производства меньше держат).

Отсюда делаем вывод, чтобы автоматика срабатывала необходимо выбирать по проводнику или подключенному электрооборудованию. Никаких запасов в большую сторону быть не должно!

Время-токовая характеристика(ВТХ) необходимо для соблюдения селективности в щите автоматике.

В быту распространены ВА с ВТХ «В», «С» и «D», по убыванию в чувствительности соответственно. Чаще встречаются с характеристикой «С». Обратимся к схеме.

В случае короткого замыкания(КЗ) должен отключится автоматический выключатель №2, но на практике т.к. номиналы и ВТХ ВА №1 и 2 одинаковы, то может отключится раньше ВА №1. Чтобы такого не происходило поступают следующим образом: если позволяет сечение проводов, то увеличивают номинал выключателя №1, к примеру С16. Но если нет возможности, то ставят либо ВА №1 с ВТХ менее чувствительную: D10, либо ВА №2 с ВТХ более чувствительной: В10. Правильное срабатывание ВА на поврежденном участке и есть селективность, но это только часть общей картины.

Вот как надо поступать в таких ситуациях:

А вот самую главную роль играет производитель автоматики. Даже правильно подобранный ВА китайского производителя не гарантирует защиту, в случае ненормальных режимах работы. Он либо сработает и потом выйдет из строя, либо не сработает и выйдет из строя. Советую это запомнить и учитывать при выборе.

Конструктивные особенности автоматов

В режиме короткого замыкания благодаря быстродействию механизма выключателя (пружинки) ток не успевает достичь максимального значения.

Возможность работы в любом положении.

Возможно подключение нагрузки как к верхним, так и к нижним зажимам.

Дифференциальные автоматы и УЗО

Устройство защитного отключения (УЗО) – защитный выключатель, срабатывающий при утечке тока. ВНИМАНИЕ! Не защищает от перегрузки и КЗ, устанавливается только вместе с автоматическим выключателем!

Принцип работы основан на разнонаправленности токов, сумма которых равна 0, I1 + I2=0. При нарушении изоляции, если это электроприбор с металлическим корпусом, который заземлен, ток потечет на землю, соответственно I1 + I2≠0 и сработает УЗО. А вот если корпус не заземлен, то ток не потечет, а будет «дежурить» на корпусе, пока человек не прикоснется. Произойдет утечка, УЗО отключит линии, но человек почувствует удар током. Поэтому обязательным условием правильной работы УЗО является наличие контура заземления и заземление металлических корпусов и деталей электроприборов.

Технические характеристики УЗО

1. Номинальный ток

УЗО не защищает от сверхтоков, поэтому его номинал должен быть больше номинала ВА.

2. Ток утечки

Ток утечки подбирается в зависимости от оборудования или характеристик помещения. Чувствительность срабатывания от 10 до 300 мА.

К примеру в ванной комнате без стиральной машины необходима чувствительность 10 мА, для розеток в комнате и оборудования — 30 мА, а для противопожарного и общего УЗО — 100 или 300 мА.

3. Характеристика дифференциального тока

Есть ток утечки постоянного, переменного и пульсирующего характера. В большинстве электроприборов при пробое изоляции происходит «утекание» пульсирующего или постоянного тока. Соответственно есть УЗО реагирующие только на переменный ток (они дешевле) а есть реагирующие на все токи утечки.

4. Номинальное напряжение и частота

Предельное напряжение постоянного или переменного тока, на которое рассчитано УЗО и частота работы в сети (в РФ 50Гц поэтому иногда не указывают на лицевой стороне).

5. Номинальный ток отключения

Ток короткого замыкания (КЗ), при прохождении которого УЗО останется в работоспособном состоянии.

6. Количество полюсов

Зависит от количества фаз в сети. Двухполюсные — для однофазной сети. Четырёхполюсные — для трёхфазной.

Пример УЗО

Выбираем данное УЗО для автоматического выключателя номиналом до 25А.

Существуют аппараты защиты, совмещающие в себе УЗО и ВА, их называют дифференциальные автоматические выключатели. Советуем устанавливать для экономии места в щите.

Конструктивные особенности УЗО

Не имеет собственного потребления электроэнергии.

Как построить характеристику автоматического выключателя

Любому автоматическому выключателю необходимо время на срабатывание. Оно может быть составлять сотые доли секунды, а может и несколько минут. Все зависит от тока, который будет протекать через автоматический выключатель. Если правильно выбрали кабель и автомат, то можете не бояться, что при повышенном токе изоляция на ваших проводах не расплавится, например за 30 секунд, которые необходимы, чтобы автоматический выключатель сработал от определенной перегрузки.

Есть такие интересные время-токовые характеристики автоматических выключателей – это такие красивые графики кривых зависимости времени срабатывания от величины тока. Они на автоматах обозначаются буквами B, C и D.

Эти буковки стоят перед значением номинала автомата. Ниже представлены обычные графики, по которым можно определить, через какое время нагрузка будет обесточена при повышенном токе или его скачке. В школу ходили? С графиками работать умеете? Тогда сразу разберетесь. По вертикальной оси стоит время в секундах. По горизонтальной шкале стоит отношение протекающего по проводам тока к номинальному току автомата I/In.

Что такое время-токовые характеристики автоматических выключателей и зачем они нужны?

Чем же различаются время-токовые характеристики автоматических выключателей «B», «C» и «D»? Все просто! Они различаются в значении величины отношения протекающего тока к номинальному току I/In.

№ ппВремя-токовая характеристика автоматического выключателяОтношение протекающего тока к номинальному току I/In
1B3-5
2C5-10
3D10-20

Если все равно остались вопросы, то идем дальше разбираться вместе. Буду приводить все на конкретных примерах, так как это будет более понятно, чем если буду объяснять «на пальцах».

Читать еще:  Выключатель муфты привода вентилятора камаз

Допустим, есть у нас автоматический выключатель номиналом 10А с характеристикой В. Мы выбрали на 10А, так как проще будет считать, и они часто используются в быту.

Например, произошло ЧП. Жена попросила повесить ковер, а Вы когда сверлили, попали в провод, идущий от распредкоробки. Бабах! Вокруг тишина и темно. Здесь Вы просто сверлом закоротили жилы провода, и произошло короткое замыкание. Было такое? Признаюсь, что у меня в молодости такое было.

В данной ситуации автоматические выключатели с характеристикой В срабатывают практически мгновенно, когда ток в сети превысит значение номинала автомата в 3-5 раз. В нашем случае это ток лежит в пределах 30-50 ампер. Конечно при коротком замыкании ток увеличивается в сотни раз, но автомату с характеристикой В достаточно 3-5 кратного увеличения. Здесь приходит в действие электромагнитный расцепитель.

Смотрим графики ниже и видим, что при токе 50А автомат сработает через 0,01 секунду. Это получается отсюда. Ток при КЗ делим на номинальный ток автомата, т.е. 50А/10А=5. Теперь на горизонтальной шкале находим цифру 5 и ведем условную линию (на рисунке она выделена красным) вертикально вверх до пересечения с кривой. Ставим точку и от нее ведем условную горизонтальную линию до оси времени. У нас получилось ориентировочно 0,01 секунда. Аналогично при перегрузке сети током 15А у нас отношение составило 1,5 и время задержки на срабатывание составит 30 секунд. Здесь автомат отключится благодаря работе теплового расцепителя. Если сечение провода рассчитано правильно, то его изоляция таким током и за это время не успеет расплавиться. Вы защищены.

Выше мы рассмотрели нижнюю кривую, но на картинке их можно выделить 3 шт. Зачем все это? Давайте разберемся. Эти кривые предназначены для разных состояний автоматических выключателей: «холодного» (верхняя кривая) и «горячего» (нижняя кривая), а сам график составлен для температуры окружающей среды +30С. По пунктирной линии рассчитывается время отключения для автоматом номиналом не выше 32А.

Для холодного состояния автоматического выключателя с характеристикой В для вышеописанного примера, время задержки на срабатывание составит при токе 50А – 0,04 сек. и при токе 15А – 4000 сек. (примерно 67 мин.). На рисунке выше это показано синим цветом.

Еще учтите, что автоматы стоят в разных местах – в квартире, в подъезде, на улице и т.д. Например, зимой дома температура +25, в подъезде +16, на улице -25. Соответственно температура элементов расцепителя разная и ему нужно разное время, чтобы прогреться и заставить автомат сработать.

Еще здесь существуют поправочный коэффициент. Чем ниже температура окружающей среды, тем больший ток через себя будет пропускать автомат и наоборот. При одной и той же нагрузке в жарких и в холодных помещениях один и тот же автомат будет срабатывать при разных значениях тока. Это колебания не значительные и этот вопрос становится актуальным, когда автоматический выключатель сильно нагружен и работает на пределе своего номинала. Стоит повыситься окружающей температуре, как он сможет отключить нагрузку. Часто такой вопрос встает летом в жарких помещениях.

Теперь скажу несколько слов про время-токовые характеристики автоматических выключателей C и D. Суть их заключается в том, что все графики характеристик сдвинуты вправо, т.е. таким образом, увеличивается время их срабатывания. Автомат с характеристикой C при коротком замыкании сработает, когда ток в сети превысит номинальный ток самого автомата в 5-10 раз. Автомат с характеристикой D при коротком замыкании сработает, когда ток в сети превысит номинальный ток самого автомата в 10-20 раз.

Из графиков получаем (смотрим ниже). Для автоматического автомата на 10А характеристики C время срабатывания уже будет: при токе 50А примерно 0,02 сек. и при токе 15А примерно 40 сек. Это для горячего состояния автомата (красный цвет). Для холодного состояния (синий цвет) получаем: при токе 50А примерно 27 сек. и при токе 15А примерно 5000 сек. (83 мин.).

Для автоматического автомата на 10А характеристики D (смотрим графики ниже) время срабатывания уже будет: при токе 50А примерно 1,5 сек. и при токе 15А примерно 40 сек. Это для горячего состояния автомата (красный цвет). Для холодного состояния (синий цвет) получаем: при токе 50А примерно 30 сек. и при токе 15А примерно 6000 сек. (100 мин.).

Вот видите какая разница в значениях времени при перегрузке автоматов. Это тоже нужно знать и учитывать при их выборе.

Как правило, для квартир используют автоматические выключатели с характеристикой B, а на производстве — C и D. Хотя очень часто можно встретить в этажных щитках автоматы с параметром C. Еще автоматы с параметром B в продаже редко встречаются.

Также учтите, что каждый автомат может пропускать через себя ток больший номинального в 1,13 раз. Это видно из графика. Видите на горизонтальной оси значение 1,13 и если вести условную линию вертикально вверх, то она никогда не пересечет кривую времени. Следовательно, автомат при таком токе не сработает. Поэтому выбирайте кабель большего сечения, т.е. с запасом. Лучше перестрахуйтесь.

Смотрите для каких автоматических выключателей какой соответствует ток не отключения. Это тоже учитывайте при выборе автоматического выключателя по номиналу и кабеля.

№ ппНоминал автоматических выключателей, АУсловный ток не отключения автоматических выключателей, А
11011,3
21618,08
32022,6
42528,25

Например, для нагрузки, потребляющей ток 25А вы выбрали кабель сечением 2,5мм2. Тут жена собралась готовить обед, попутно пить чай, размораживать мясо в микроволновке и еще принесла на кухню фен (который вы не учитывали в своих расчётах), чтобы волосы посушить. Таким образом, вместо 25А вы можете получить в сети 28А, и автомат тут не сработает, так как он сработает при токе 25А*1,13=28,25А. Из таблицы видно, что для такого тока уже нужен провод сечением минимум 3 мм2. Но у нас провод сечением 2,5 мм2 и поэтому он будет греться и плавиться изоляция.

Да еще возьмите на заметку, что многие производители лукавят при производстве кабеля. Делают его по ТУ (техническим условиям), при которых уменьшают сечение кабеля. Я придерживаюсь такого мнения в выборе кабеля и автоматических выключателей, что лучше все брать с разумным запасом, чем предполагаемая нагрузка.

Не забываем улыбаться:

А не пойти ли мне поработать? — подумал электрик.
И не пошел …

Время-токовые характеристики автоматических выключателей AM, A, B, C, D, K, Z

Автоматический выключатель – это электротехническое устройство, которое отключает сеть при возникновении в ней – слишком больших электрических токов. Большой электрический ток опасен выходом из строя бытовой электротехники, возможным перегревом, возгоранием и, соответственно, пожаром.

Задачи автоматических выключателей

1) вовремя и безошибочно распознать слишком высокий ток;

2) разорвать цепь до того, как этот ток сможет нанести какие-либо повреждения.

Категории высоких токов:

1) сверх токи короткого замыкания, когда нулевой и фазный проводник напрямую замыкаются между собой, минуя нагрузку.

Современные электромагнитные расцепители без труда и совершенно безошибочно определяют КЗ и отключают нагрузку за доли секунды, не допуская даже малейшего повреждения проводников и аппаратуры.

2) большие токи, вызванные перегрузкой сети (например, включением большого количества бытовых электроприборов, или неисправностью некоторых из них);

Ток перегрузки ненамного отличается от номинального, в течение какого-то времени он может протекать по цепи совершенно без последствий. Поэтому нет необходимости отключать такой ток мгновенно, тем более что он мог и возникнуть очень кратковременно. Ситуация отягощается тем, что каждая сеть имеет свой предельный ток перегрузки. И даже не один.

Устройство автоматических выключателей. Виды расцепителей.

1) механический – для ручного включения и выключения,

2) электромагнитный (соленоидный) – для отключения токов короткого замыкания,

3) тепловой для защиты от перегрузок.

Характеристика теплового и электромагнитного расцепителей и является характеристикой автоматического выключателя, которая обозначается латинской буквой на корпусе перед числом, обозначающим токовый номинал аппарата.

Характеристика автоматических выключателей означает:

а) диапазон срабатывания защиты от перегрузок, обусловленный параметрами встроенной биметаллической пластины, изгибающейся и разрывающей цепь при протекающем через нее большом электрическом токе. Точная настройка достигается за счет регулировочного винта, поджимающего эту самую пластину;

б) диапазон срабатывания максимально-токовой защиты, обусловленный параметрами встроенного соленоида.

Характеристики модульных автоматических выключателей

Есть целый ряд токов, для каждого из которых теоретически можно определить свое максимальное время отключения сети, составляющее от нескольких секунд до десятков минут. Но и ложные срабатывания тоже необходимо исключить: если ток для сети безвреден, то отключение не должно происходить ни через минуту, ни через час – вообще никогда.

1) MA – отсутствие теплового расцепителя. На самом деле, он действительно не всегда бывает нужен. Например, защиту электродвигателей часто осуществляют при помощи максимально-токовых реле, а автомат в подобном случае нужен лишь для защиты от токов короткого замыкания.

2) Характеристика А. Тепловой расцепитель автомата этой характеристики может сработать уже при токе, составляющем 1,3 от номинального . При этом время отключения составит около часа. При токе, превышающем номинальный в два раза, в действие может вступить электромагнитный расцепитель, срабатывающий примерно за 0,05 секунды. Но если при двукратном превышении тока соленоид еще не сработает, то тепловой расцепитель по-прежнему работает, отключая нагрузку примерно через 20-30 секунд. При токе, превышающем номинальный в 3 раза , гарантированно срабатывает электромагнитный расцепитель за сотые доли секунды.

Автоматические выключатели характеристики А устанавливаются в тех цепях, где кратковременные перегрузки не могут возникнуть в нормальном рабочем режиме. Примером могут служить цепи, содержащие устройства с полупроводниковыми элементами, способными выйти из строя при небольшом превышении тока.

3) Характеристика В Характеристика этих автоматов отличается от характеристики А тем, что электромагнитный расцепитель может сработать только при токе, превышающем номинальный в 3 и более раз . Время срабатывания соленоида составляет всего 0,015 секунды. Тепловой расцепитель при трехкратной перегрузке автомата В сработает через 4-5 секунд. Гарантированное срабатывание автомата происходит при 5 кратной перегрузке для переменного тока и при нагрузке, превышающей номинальную в 7,5 раз в цепях постоянного тока.

Автоматические выключатели характеристики В применяются в осветительных сетях, а также прочих сетях, в которых пусковое повышение тока либо невелико, либо отсутствует вовсе.

4) Характеристика С. Это самая известная характеристика для большинства электриков. Автоматы С отличаются еще большей перегрузочной способностью по сравнению с автоматами В и А. Так, минимальный ток срабатывания электромагнитного расцепителя автомата характеристики С составляет 5 кратный номинальный ток. При этом же токе тепловой расцепитель срабатывает через 1,5 секунд, а гарантированное срабатывание электромагнитного расцепителя наступает при 10 кратной перегрузке для переменного тока и при 15-тикратной перегрузке для цепей тока постоянного.

Автоматические выключатели С рекомендуются к установке в сетях со смешанной нагрузкой, предполагающей умеренные пусковые токи, благодаря чему бытовые электрощиты содержат в своем составе именно автоматы этого типа.

Характеристики автоматических выключателей B, C и D

5) Характеристика D – отличается очень большой перегрузочной способностью. Минимальный ток срабатывания электромагнитного соленоида этого автомата составляет 10 раз номинальных токов, а тепловой расцепитель при этом может сработать за 0,4 секунды. Гарантированное срабатывание обеспечено при 20 кратной перегрузке по току.

Автоматические выключатели характеристики D предназначены, прежде всего, для подключения электродвигателей, имеющих большие пусковые токи.

6) Характеристика K отличается большим разбросом между максимальным током срабатывания соленоида в цепях переменного и постоянного тока. Минимальный ток перегрузки, при котором может сработать электромагнитный расцепитель, для этих автоматов составляет 8 раз номинальных токов, а гарантированный ток срабатывания той же защиты составляет 12 кратном номинальных токов в цепи переменного тока и 18 номинальных токов в цепи постоянного тока. Время срабатывания электромагнитного расцепителя составляет до 0,02 секунды. Тепловой расцепитель автомата К может сработать при токе, превышающем номинальный всего в 1,05 раз.

Из-за таких особенностей характеристики K эти автоматы применяют для подключения чисто индуктивной нагрузки.

7) Характеристика Z также имеет различия в токах гарантированного срабатывания электромагнитного расцепителя в цепях переменного и постоянного тока. Минимальный возможный ток срабатывания соленоида для этих автоматов составляет 2 раза номинальных, а гарантированный ток срабатывания электромагнитного расцепителя составляет 3 раза номинальных тока для цепей переменного тока и 4,5 номинальных тока для цепи постоянного тока. Тепловой расцепитель автоматов Z, как и у автоматов K, может срабатывать при токе в 1,05 от номинального.

Применяются автоматы Z только для подключения электронных устройств.

04.04.06

Читать еще:  Резервные защиты обходного выключателя

Другие статьи

Почему двустенные трубы так популярны?

Для жилых помещений для прокладки электропроводки мастера чаще всего выбирают кабель ВВГнг-Ls

Правила монтажа проводов и кабелей для скрытой проводки

Рассмотрим четыре способа разводки

Преимущества и недостатки советского и европейского стандартов установки розеток и выключателей

При обустройстве предусадебного участка возникает необходимость провести свет в беседку, гараж и хозпостройки. Мы расскажем какой кабель выбрать.

Декрафт – это торговая марка Schneider Electric сегмента эконом, созданная в 2007 году.

Почему выгодно использовать корпуса для светодиодных линейных ламп с цоколем G13

Следующие общие правила и рекомендации помогут вам предотвратить несчастные случаи при выполнении любых электромонтажных и ремонтных работ в квартире или доме.

Пример упрощенного расчета

Высокое напряжение может убить даже без касания проводов

Сравним светодиодные светильники с металлогалогенными и натриевыми.

Остались узкие сферы использования, где нить накала остается по-прежнему лучшим вариантом.

В статье рассмотрим ошибки, которые возникают при монтаже домашней электропроводки и последствия, которые могут повлечь за собой данные ошибки.

Особенности эксплуатации и прокладки кабеля в резиновой изоляции и оболочке.

Защита от попадания влаги и пыли внутрь корпуса электрического оборудования, является гарантией его надежной и безопасной работы на протяжении всего срока службы

Определение проводов (фаза, ноль, заземление) при помощи цвета изоляции проводников значительно упрощает и ускоряет процесс монтажа распределительных щитков и электропроводки.

Все искусственные источники света не могут заменить солнце и поэтому, наша задача научиться правильно выбирать лампы и светильники. Что такое цветовая температура?

Устройство защитного отключения — УЗО, предназначено для защиты человека от поражений электрического тока, так оно срабатывает при меньших утечках тока чем автоматические выключатели.

Не каждая домохозяйка сразу сообразит, как перевести амперы в ватты или в киловатты, либо наоборот — ватты и киловатты в амперы. Для чего это может потребоваться? Для выбора розетки, вилки, а результате вы будете знать, почему (не)работаю приборы на полную мощность.

Сечение кабеля выбирается по мощности электроприборов или оборудования, которые будут им запитаны.

Как организовать пространство в квартире удобным и безопасным. Установите розетки и выключатели в соответствии с рекомендациями.

Из-за эффективности светодиодные лампы получили широкое распространение, их используют практически для всех видов цоколей, с разными видами колб. Однако у светодиодных ламп есть один недостаток цена. Высокая стоимость приобретения светодиодных источников света компенсируется длительным сроком эксплуатации.

Силовые кабели удобно классифицироваться по номинальному напряжению, на которые они рассчитаны. Классификационными признаками могут служить также вид изоляции и конструктивные особенности кабелей

Как схема, так и методика монтажа электропроводки в бане имеют некоторые особенности. Разберемся, как ее грамотно проложить.

Прокладка кабеля в земле применяется с целью электроснабжения зданий, сооружений, обеспечения уличного освещения, электроснабжения дачных участков, бытовок, и во многих других случаях.

Основные принциы электропроводки помогут вам правильно принять решение при проведении электромонтажных работ в вашем доме или квартире.

Уточним, какое количество, каких именно светодиодных светильников или ламп требуется установить, чтобы в помещении было достаточно светло и комфортно.

Сравним энергоэффективность светодиодных ламп, люминесцентных (энергосберегающих), галогенных и ламп накаливания.

Семь практических рекомендаций

Простые и доступные способы экономии, которые легко использовать в быту

Восемь практических рекомендаций как выбрать светильник для офиса и/или дома.

Розетка — и это главное! — должна находиться не там, где она не портит интерьер, а там, где пользоваться ею удобно и безопасно.

Что такое прогрузка автоматических выключателей

При работе энергосистемы, зачастую необходимо включать или выключать различные цепи (например, линии электропередач, распределительные устройства, генераторные установки) как в нормальных, так и в аварийных условиях. Ранее эту функцию выполняли переключатели и предохранители, расположенные последовательно с цепью. Однако такое средство контроля имеет два недостатка. Во-первых, когда предохранитель перегорает, требуется довольно много времени, чтобы заменить его и восстановить подачу тока. Во-вторых, предохранитель не может качественно прерывать сильные токи замыкания, возникающие в результате неисправностей в современных цепях высокого напряжения.

С развитием энергосистемы, требуется использование более надежных средств защиты, таких как автоматические выключатели. Данный прибор может замыкать или размыкать цепь вручную или автоматически при любых условиях, в том числе во время короткого замыкания.

Принцип работы автоматического выключателя

Автоматический выключатель состоит из неподвижных и подвижных контактов, называемых электродами. При нормальных условиях работы, эти контакты остаются замкнутыми и не будут автоматически открываться до тех пор, пока система не выйдет из строя. Конечно, контакты могут быть открыты вручную или с помощью пульта дистанционного управления, когда это необходимо. При возникновении неисправности в какой-либо части системы, отключающие катушки выключателя срабатывают автоматически, а движущиеся контакты раздвигаются механизмом, тем самым размыкая цепь.

Читать еще:  Розетки выключатели рамка стекло

Когда контакты автоматического выключателя разъединяются в условиях неисправности, между ними возникает электрическая дуга. Таким образом, ток может проходит до тех пор, пока разряд не прекратится. Появление дуги не только задерживает процесс прерывания тока, но и генерирует огромное количество тепла, которое может привести к повреждению системы или самого выключателя. Поэтому основная задача автоматического выключателя состоит в том, чтобы погасить дугу в кратчайшие сроки, дабы выделяемое тепло не достигло опасного значения. Это основной принцип работы автоматического выключателя.

Зачем нужен этот прибор

Автоматические выключатели выполняют три основные задачи:

  • они должны проводить ток максимально эффективно, когда отключены;
  • будучи включенными, они должны надежно изолировать контакты друг от друга;
  • в случае короткого замыкания, устройства должны отключать ток как можно быстрее и надежнее, тем самым защищая все последующее оборудование.

Почему важно проверять устройство

Автоматический выключатель может простаивать годами, но при возникновении короткого замыкания он должен тут же, в течение нескольких миллисекунд, защитить электрические цепи. Основными ошибками, возникающими в приборах, являются: неправильное соединение, короткие замыкания в катушках, повреждение/износ механических соединений или изоляционного материала. Поэтому автоматы должны регулярно и тщательно проверяться на исправность работы.

Автоматические выключатели выполняют жизненно важную роль в защите дорогостоящего оборудования от повреждений из-за неисправностей, то есть надежно подключают и отключают электроэнергию. Это требует подтверждения их надежности с помощью полевых испытаний во время монтажа и регулярных эксплуатационных испытаний в течение всего срока службы, чтобы предотвратить неполадки и проблемы, которые могут поставить под угрозу безопасность подстанции. Поэтому регулярное тестирование производительности является важной и экономически эффективной частью любой стратегии технического обслуживания.

Как определить, что автоматический выключатель неисправен

Автоматический выключатель может испортиться преждевременно, например, из-за летней жары. Если это произойдет, устройство перестанет сработать, даже если через эту цепь проходит слишком много электричества. Проще говоря, возникнет серьезная проблема, потому что она может в конечном итоге привести к пожару в доме. Стоит отметить, что в домашних условиях можно только визуально проверить устройство. Тесты и замену стоит предоставить профессионалам.

Причины выхода устройства из строя:

  1. Короткое замыкание. Обычно возникает, когда некоторые провода случайно соприкасаются.
  2. Перегрузка электрической цепи. Прибор пропускает больше тока, чем предусмотрено производителем.

Типичные признаки неисправного автомата:

  • запах гари в щитке, исходящий от электрического оборудования;
  • прибор горячий на ощупь;
  • видны сгоревшие детали, оборванные провода и явные признаки износа.

Если при проверке автоматического выключателя наблюдается какой-либо из вышеперечисленных признаков, значит пришла пора вызывать электриков с просьбой замены устройства.

Этапы заводского тестирования автоматических выключателей

Типовые испытания организуются с целью проверки возможностей и обеспечения точной номинальной характеристики автоматического выключателя. Такие испытания проводятся в специально построенной испытательной лаборатории в соответствие с ПУЭ.

Механическое испытание — это испытание типа механической способности, включающее повторное отключение и включение устройства. Автоматический выключатель должен закрываться и открываться с надлежащей скоростью, и выполнять свою работу и функцию без каких-либо сбоев.

Тепловые испытания проводятся для проверки теплового поведения автоматов. Из-за протекания номинального тока через его полюс в номинальном состоянии, испытуемый выключатель подвергается установившемуся повышению температуры. Повышение температуры для номинального тока не должно превышать 40 °C.

Диэлектрические испытания. Эти тесты проводятся для проверки мощности частоты и импульсного напряжения выдерживаемой емкости. Испытания частоты мощности проводятся на новом устройстве. Испытательное напряжение изменяется с номинальным напряжением выключателя. При импульсных испытаниях на выключатель подается импульсное напряжение определенной величины. Для наружного контура проводятся сухие и влажные испытания.

Испытание на короткое замыкание. Электроустановка подвергается внезапным коротким замыканиям в испытательных лабораториях, и осциллограммы используются, чтобы знать поведение автоматических выключателей во время включения, во время разрыва контакта и после гашения дуги. Осциллограммы изучаются с особым учетом токов возбуждения и размыкания, как симметричных, так и несимметричных напряжений рестрикции, а распределительное устройство иногда испытывается в номинальных условиях.

Регламент испытания автоматического выключателя

Плановые испытания проводятся на основании и со стандартами ПУЭ. Эти тесты проводятся на территории завода-изготовителя. Обычные и плановые испытания подтверждают правильность функционирования автоматического выключателя. Некоторые руководящие принципы и рекомендации по этим испытаниям включают регулярное техническое обслуживание и проверку того, что производительность автоматического выключателя соответствует калибровочным кривым производства. Крайне важно, чтобы испытания автоматических выключателей проводились в стабильных условиях при подходящей температуре, чтобы не было никаких отклонений в данных.

Профилактическое обслуживание автомата защиты цепи, осмотр и испытание

Профилактическое обслуживание зависит от условий эксплуатации. Первичные проверки будут направлены на выявление твердых частиц, загрязняющих внутреннюю работу устройства. Накопление твердых частиц обычно можно утилизировать, щелкнув на выключателе «Выкл» и «Вкл», чтобы очистить накопившуюся пыль.

Испытание отключения автоматического выключателя

Анализируя ток, потребляемый катушкой отключения во время работы выключателя, можно определить, имеются ли механические или электрические проблемы. Во многих случаях такие проблемы могут быть локализованы, и с помощью них можно найти первопричину.

Испытание сопротивления изоляции

Для испытания сопротивления выключателя, проводники нагрузки и линии должны быть предварительно отключены. Если их не отсоединить, то тестовые значения будут также включать характеристики подключенной цепи. Испытание на сопротивление имеет решающее значение для проверки того, что изоляционный материал работает корректно. Для проверки сопротивления изоляции используется прибор, известный как мегаомметр. Прибор подает напряжение постоянного тока на провод в течение заданного периода времени, чтобы проверить сопротивление внутри изоляции на конкретном проводе или обмотке. Следует также отметить, что если включить напряжение, которое слишком высоко для того, чтобы эта изоляция выдержала, то потенциально можно повредить изоляцию.

Испытания соединения

Проверка соединения важна для того, чтобы убедиться в наличии соответствующего электрического соединения и распознать следы перегрева. Важно, чтобы электрические соединения были установлены по правилам — это предотвращает и уменьшает перегрев.

Испытание контактного сопротивления

Нормальный износ контактов возникает после длительного использования. Простой способ определить следы ослабления внутри выключателя — это оценить сопротивление на каждом полюсе. Признаки аномальных отклонений внутри устройства, таких как эрозия и загрязнение контактов, очевидны, если на выключателе имеются чрезмерные падения милливольт. Проверка контактного сопротивления важна для определения того, пригоден ли прибор к работе.

Испытание на срабатывание при перегрузке

Компоненты отключения от перегрузки можно проверить, введя 300 % номинальной мощности выключателя в каждый полюс автоматического выключателя, чтобы определить, будет ли он автоматически реагировать на срабатывание. Цель состоит в том, чтобы убедиться, что автоматический выключатель работает корректно.

Как проводится прогрузка автоматического выключателя

В современной электронике используются различные устройства для проверки автоматических выключателей. Также проверка проводится с помощью разных методов тестирования и типов тестеров. При выполнении прогрузки делается частичный демонтаж прибора, а по окончанию тестов — возврат выключателя на место.

Чтобы начать проверку, требуется глубокое знание самого устройства, а именно надо:

  • понимать, как оно работает;
  • ознакомиться с ПУЭ;
  • знать исходные значения предыдущих тестов;
  • иметь начальные значения, с которыми сравниваются фактические результаты;
  • иметь установленные настройки или начальные характеристики, заданные производителем.

Для тестов используются специальные устройства, например, анализатор, микроомметр, а для проверки автоматических выключателей напряжением до 1000 В — СИНУС-1600 или Сатурн-М.

Прогрузка с помощью анализатора автоматических выключателей

Испытание с помощью анализатора — это эффективный способ проверки выключателя. Тестер анализирует не только время срабатывания, но и существенную синхронность полюсов в различных операциях. Это показывает время открытия или закрытия каждого полюса в одиночных или комбинированных операциях, а также проверяет возможную разницу между полюсами или время рассогласования, которое может привести к опасному отсутствию синхронизации.

Способ тестирования автоматического выключателя с помощью анализатора может выявить и дополнительные проблемы, что приводит к проверке других характеристик, таких как время сопротивления, время хода, время скорости, состояние катушек и механический анализ.

Прогрузка с помощью микроомметра

Автоматические выключатели обычно несут огромную величину тока. Большее контактное сопротивление вызывает большие потери и низкую пропускную способность тока, также высокую температуру. Так что тестирование сопротивления с помощью микроомметров является другим способом проверки прибора для выявления и предотвращения предстоящих проблем.

Синус-1600

Синус-1600 — достаточно функциональный прибор для испытаний, причем он безопасен и прост в эксплуатации. Его применение эффективно и рационально при предъявлении к форме испытательного тока повышенных требований относительно параметра нелинейных искажений.

Сатурн-М

Сатурн-М применяется для прогрузки автоматических выключателей с тепловыми и электромагнитными расцепителями. Применяется также и в лабораторных условиях в целях контроля тока, протекающего по прибору.

Видео по теме

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector