Ivalt.ru

И-Вольт
4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

График характеристик автоматических выключателей

Характеристики автоматических выключателей

При выборе приборов для защиты электрических сетей необходимо учитывать особенности их конструкции, от которых зависит эффективность работы в конкретных условиях. Это азбучная истина, а чтобы следовать ей, вам необходимо уметь читать обозначения на корпусе прибора. Основным параметром автоматического выключателя является номинал рабочего тока, эту цифру на корпусе принимают во внимание прежде всего.

Рядом с ней находится еще и буква. Она обозначает тип его времятоковой характеристики. Если вы упустите ее из вида, то ваша уверенность в надежности защиты электрической цепи может оказаться ложной – сначала сгорит защищаемое устройство, а вот автомат сработает уже после этого. Сегодня мы расскажем вам о том, что такое токовая характеристика автоматического выключателя и как она влияет на его работу.

Как устроен автоматический выключатель

Автоматический выключатель – это электромеханическое устройство. Его конструкция состоит из подвижной контактной группы, системы рычагов и пружин, обеспечивающих ее перемещение и удержание в одной из позиций (включено или выключено), а также двух чувствительных элементов, реагирующих на изменение силы тока, проходящего по цепи. Способ их реакции учитывает одно из внешних проявлений действия электрического тока:

  • Движение проводника в магнитном поле.
  • Нагрев проводника вследствие особенностей его атомной структуры, препятствующей прохождению тока и называемой электрическим сопротивлением.

В первом случае чувствительный элемент называется электромагнитным, а во втором – тепловым расцепителем.

Электромагнитный расцепитель

Электромагнитный расцепитель автоматического выключателя – это соленоид, состоящий из нескольких витков провода и металлического штыря внутри них. В цепь он включается последовательно – одним концом к зажимной клемме на входе, другим – к пластине теплового расцепителя.

При прохождении электрического тока, превышающего номинальный, штырь соленоида сдвигается и приводит в действие систему рычагов, которая сдвигает входной подвижный контакт и размыкает цепь. Рычаг ручного взвода при этом снимается с защелки и автоматически переходит в положение «Выключено».

К каждой входной клемме (полюсу) АВ подключается свой электромагнитный расцепитель, а механическая система рычагов устроена так, что при нарушении равновесия в одной секции приводит к срабатыванию всей конструкции.

Особенностью работы этого элемента является то, что расцепление контактов происходит быстро, практически мгновенно.

Тепловой расцепитель

Его работа основана на феномене изменения формы при нагреве составного проводника, части которого имеют разную электрическую проводимость. Общее сопротивление этого элемента подобрано так, что при прохождении номинального электрического тока он не нагревается.

Если его сила увеличивается, то пластина греется и изгибается, одним концом размыкая соединение с выходной клеммой, а другим приводя в действие систему рычагов.

Количество тепловых расцепителей так же равно числу входных клемм АВ. Этот элемент обладает тепловой инерцией, поэтому он срабатывает медленно.

При подключении автомата стоит избегать путаницы между входными и выходными клеммами. Дело в том, что сопротивление биметаллической пластины довольно велико, из-за чего электромагнитный расцепитель, если он не первый в цепи, перестает работать в штатном режиме.

При нормальных условиях этого незаметно, но при коротком замыкании отключение АВ происходит с существенной временной задержкой. Поэтому защищаемый прибор может сгореть.

Более детальную информацию про устройство автоматического выключателя можно найти здесь.

График времятоковой характеристики

Автоматические выключатели срабатывают при условии, что сила фактически проходящего по цепи тока превышает номинальное в несколько раз. Величина этого соотношения стандартизирована и привязана к конкретным условиям эксплуатации электрических сетей. Для удобства восприятия каждый тип обозначен латинской буквой. Ей соответствует график зависимости времени срабатывания от величины отношения токов. Он приведен на рисунке ниже.

По оси ординат (Y) отложены значения времени в секундах, а по оси абсцисс соотношение I/Iном в разах.

Пологая кривая слева характеризует работу теплового расцепителя. Хорошо видно, что зависимость времени срабатывания от соотношения токов квадратичная, описываемая функцией Х 2 . Практически горизонтальная кривая справа – это работа электромагнитного расцепителя. Она описывается экспоненциальной функцией E n , скорость изменения значения которой значительно выше, чем квадратичной. Эти два участка графика соединены вертикальной линией, которая обозначает порог срабатывания.

Что обозначают буквы

Итак, для защиты, например, электродвигателя мощностью 10 кВт вы приобретаете АВ с номинальным током 32 ампера. Какие буквенные обозначения вы можете встретить рядом с цифрой, что они означают, и какой вариант прибора подойдет вам в этом случае?

  • Тип А. Диапазон превышения токов в 2-3 раза. Применяются для защиты чувствительных к перегрузкам полупроводниковых приборов или при большой протяженности питающей линии.
  • Тип В. Порог срабатывания при превышении токов сверх номинальных в 3-5 раз. Достаточная мера защиты для приборов с преобладающей активной нагрузкой и не имеющих пусковых токов. Например, для светодиодных или ламп накаливания, а также нагревательных приборов резистивного типа.
  • Тип С. Порог срабатывания равен 5-10 раз. Используется для защиты потребителей малой и средней мощности, работа которых связана с повышением токов при запуске. Например, газоразрядных ламп, холодильников и других бытовых устройств, в составе конструкции которых есть электродвигатели (тепловые пушки, конвекторы).
  • Тип D. Порог срабатывания находится в диапазоне от 10 до 20 раз. Используется для защиты электрических приводов средней и большой мощности, а также в цепях уличного освещения с использованием газоразрядных ламп.

Вам следует приобрести АВ типа D. В противном случае цепь будет обесточиваться при каждом пуске электродвигателя, если привод имеет постоянную нагрузку. Или во время работы, при ее подключении.

В быту наиболее применимы автоматические выключатели типа В и С. Они обеспечивают оптимальную защиту большинства типов потребителей электрической энергии.

Однако если у вас есть система управления, например, газовым котлом или компьютерная стойка, вам стоит применить автоматический выключатель типа А. Только в этом случае вы можете быть уверены в том, что защита сработает оптимально.

Буквенные литеры времятоковых характеристик указываются только на автоматических выключателях и защитных устройствах, имеющих электромагнитный и тепловой расцепители. Этим они отличаются от устройств защитного отключения – УЗО, работающих на ином физическом принципе и использующихся для сохранения жизни и здоровья людей. Они могут работать в паре при условии совпадения номиналов рабочих токов, но подменять одно другим категорически нельзя.

Основные параметры автоматических выключателей

Автоматический выключатель – это электрический коммутационно-защитный аппарат, предназначенный для автоматического размыкания электрической цепи при аварийных ситуациях, а также для нечастых оперативных включений и отключений электрических цепей при нормальных условиях работы.

К основным параметрам автоматических выключателей относятся:

– номинальное напряжение автоматического выключателя;

– номинальный ток автоматического выключателя;

– номинальный ток максимального расцепителя;

– уставка по току срабатывания максимального расцепителя;

– уставка по времени срабатывания максимального расцепителя (только для селективных автоматов)

Номинальным током АВ считается ток, на который рассчитаны его главные контакты в продолжительном режиме работы. Для отключения токов КЗ в АВ устанавливают максимальные расцепители (реле максимального тока). Номинальные токи максимальных расцепителей могут отличаться от номинальных токов АВ. Уставкой по току срабатывания максимального расцепителя считается ток, при котором максимальный расцепитель отключит автомат. Уставка по току срабатывания АВ обычно приводится в относительных единицах. Уставка по времени срабатывания максимального расцепителя это время между моментом обнаружения короткого замыкания и моментом отключения автоматического выключателя.

5. Нейманівська й гарвардська архітектури засобів обчислювальної техніки їхньої особливості й області застосування.

Архитектура фон Неймана — широко известный принцип совместного хранения программ и данных в памяти компьютера. Вычислительные системы такого рода часто обозначают термином «машина фон Неймана», они основаны на следующих принципах:

· Принцип однородности памяти. Программы и данные хранятся в одной и той же памяти. Поэтому ЭВМ не различает, что хранится в данной ячейке памяти — число, текст или команда. Над командами можно выполнять такие же действия, как и над данными.

· Принцип адресуемости памяти. Основная память структурно состоит из пронумерованных ячеек; процессору в произвольный момент времени доступна любая ячейка.

· Принцип последовательного программного управления. Предполагает, что программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности.

· Принцип жесткости архитектуры. Неизменяемость в процессе работы топологии, архитектуры, списка команд.

Такая архитектура реализуется в микропроцессорах, которые используются в вычислительных средствах общего назначения от комплексов рекордной производительности до ноутбуков.

Совместное использование шины для памяти программ и памяти данных приводит к узкому месту архитектуры фон Неймана, а именно ограничению пропускной способности между процессором и памятью по сравнению с объёмом памяти. Из-за того, что память программ и память данных не могут быть доступны в одно и то же время, пропускная способность является значительно меньшей, чем скорость, с которой процессор может работать.

Читать еще:  Выключатель заднего хода уаз 390945

Гарвардская архитектура — архитектура ЭВМ, отличительными признаками которой являются:

1. Хранилище инструкций и хранилище данных представляют собой разные физические устройства.

2. Канал инструкций и канал данных также физически разделены.

В Гарвардской архитектуре характеристики устройств памяти для инструкций и памяти для данных не требуется иметь общими. В частности, ширина слова, тайминги, технология реализации и структура адресов памяти могут различаться. В некоторых системах инструкции могут храниться в памяти только для чтения, в то время как для сохранения данных обычно требуется память с возможностью чтения и записи. В некоторых системах требуется значительно больше памяти для инструкций, чем памяти для данных, поскольку данные обычно могут подгружатся с внешней или более медленной памяти. Такая потребность увеличивает битность (ширину) шины адреса памяти инструкций по сравнению с шиной адреса памяти данных.

Гарвардская архитектура используется в ПЛК и микроконтроллерах, таких, как Microchip PIC, Atmel AVR, Intel 4004, Intel 8051 и обеспечивает большее быстродействие и лучшее соответствие специфике решаемых задач.

Время токовая характеристика автоматического выключателя

Автоматические выключатели служат для аварийного размыкания цепи в случае превышения показателей силы тока. Они позволяют уберечь приборы от поломки или выхода из строя при недопустимых нагрузках и предотвратить возгорание.

Принцип действия

Принцип действия автоматического выключателя достаточно прост. В конструкцию выключатели входят два вида расцепителей: электромагнитный и тепловой. Первый – мгновенно срабатывает при сильном скачке силы тока. Электромагнитный расцепитель состоит из соленоида со стальным подвижным сердечником, который удерживается пружиной. Если заданный показатель тока превышается, электромагнитное поле в катушке наводится, что приводит к втягиванию катушки. В результате срабатывает механизм сопротивления. Если режим работы стандартный, магнитное поле также наводится, но оно недостаточной силы, чтобы сопротивление пружины было преодолено.

Второй – тепловой расцепитель имеет в своем составе биметаллическую пластину, которая рассчитана на определенную силу тока. Если протекающий ток превышает допустимые показатели, пластина из биметалла нагревается и гнется, благодаря чему также происходит расцепление электросети.

Работа автоматического выключателя основывается на этих двух расцепителях, поскольку порознь они малоэффективны.

Электромагнитный расцепитель быстро срабатывает при небольшом скачке. Но если взять во внимание, что некоторые высокопроизводительные моторы нуждаются в более сильном токе во время пуска, чем в обычном рабочем состоянии, то нет необходимости в срабатывании выключателя. В бытовых условиях такими мощными приборами являются пылесос, электрочайник, микроволновая печь. Для теплового расцепителя нужно некоторое время для нагревания и плавки пластины, которое может быть критичным для бытовых или промышленных приборов, подвергшихся высокому скачку тока. В жилом доме очень пагубным окажется влияние сильного тока на холодильник, компьютер и оргтехнику.

Строение электромагнитного расцепителя

Именно поэтому два вида расцепителя применяются в автоматических выключателях сообща, а за отрезок времени от скачка силы тока до аварийного выключения отвечает времятоковая характеристика автоматического прибора.

Типы характеристик

Времятоковая характеристика определяет взаимосвязь между нарастанием силы тока и моментом аварийного отключения посредством защитного автомата. Поскольку различные условия потребления тока в бытовых и промышленных условиях требуют различного напряжения сети, автоматы для защиты также обладают различной мощностью и характеристиками срабатывания. Автоматические выключатели выпускают с номиналами силы тока от 6 до 125 ампер. В быту же наиболее часто применяются защитные автоматы на 16 или 20 ампер. Для большого частного дома подойдет устройство в 25А. Что касается времятоковой характеристики, ее обозначают латинскими буквами на маркировке выключателя. Наиболее распространены три типа: B, C, D. Данная маркировка обозначает чувствительность электромагнитного расцепителя или же скорость мгновенного срабатывания при граничном повышении силы тока.

Диапазон срабатывания для этих трех типов следующий:

Расшифровка параметров разных типов автоматов выглядит так: если автомат рассчитан на силу тока в 20 ампер, то этот показатель умножается на данные диапазона срабатывания, и получается характеристика чувствительности автоматического выключателя.

Таким образом, автомат типа В на 20 ампер выключится мгновенно при силе тока свыше 100 ампер. Граничным показателем для его срабатывания является 60А, а при силе тока от 60 до 100А скорость выключения будет зависеть от скорости нагревания биметаллической пластины теплового датчика.

При выборе электрического защитного автомата для дома или промышленных целей следует не только рассчитывать его мощность, исходя из потребляемого тока в помещении, но и обращать внимание на тип времятоковой характеристики.

Автоматы идентичной мощности, но разного типа времятоковой характеристики ведут себя по-разному. В ситуации, когда автомат типа В сработает с доли секунды, такой же предохранитель типа С отреагирует только через 5-7 секунд, что может негативно сказаться на приборах и электросети в целом. В жилой квартире, где много высокочувствительных приборов с малым потреблением тока, необходимо устанавливать выключатели типа В. Для больших коммерческих, полупромышленных или офисных помещений, где есть мощные приборы, можно применить автомат типа С. Тип D используется исключительно на промышленных объектах, где есть моторы с мощными пусковыми характеристиками.

Кривая времятоковой характеристики

Для описания времятоковой характеристики предохранительных автоматических выключателей часто используют график функций, где вертикально на оси ординат прописано время расцепления электросети в секундах и десятых секунд, а горизонтально на оси абсцисс обозначены показатели роста силы тока. На данном графике рост определяется делением тока в сети на номинальный ток автомата I/In.

График функции кривой времятоковой характеристики

Изображенные две кривые отвечают за показатели в холодном состоянии (сверху) и разогретом состоянии (снизу).

Дополнительная информация: Условно также нижнюю часть кривой, резко устремляющуюся вправо, считают зоной срабатывания электромагнитного расцепителя, а левую ее часть, плавно спускающуюся вниз, – зоной теплового расцепителя.

Слева от кривой размещается отрезок времени до срабатывания автоматического выключателя, а справа – после расцепления. Сама кривая представляет момент выключения. Традиционно времятоковые характеристики в виде графика функций изображаются для работы автоматов при температуре окружающей среды +30 градусов.

Если просмотреть характеристику для автомата типа В, диапазоном срабатывания которого является показатели от 3 до 5 In, то можно увидеть следующее: время отключения сети при проходящем токе в 3 In составляет 0,02 секунды в разогретом состоянии и до 35 секунд в холодном состоянии. Для автоматов мощностью свыше 32А показатель в холодном состоянии может достигать 80 секунд.

Если же проходящий ток для того же типа автомата будет равен 5In, то в горячем состоянии автомат сработает за 0,01 секунду и за 0,04 секунды в холодном.

График функции автомата типа С

Автомат типа С не сработает при токе в 3In, а при токе 5In он отключится за 0,02 секунды в разогретом и за 11 секунд в охлажденном состоянии. По этой причине не стоит устанавливать предохранители типа С в жилом доме, где бытовые приборы не рассчитаны на большое потребление тока и резкие перепады. Автомат типа В с высокой чувствительностью обеспечит надежную защиту проводки и электрооборудования. Если же в большом частном доме используется распределительный автомат, на входе можно разместить выключатель типа С правильно рассчитанной мощности, а для отдельных точек использовать автоматы типа В.

Устройство. Видео

Об особенностях устройства автоматического выключателя АВВ расскажет видео ниже.

Время токовые характеристики автоматических выключателей

При нормальной работе электросети и всех приборов через автоматический выключатель протекает электрический ток. Однако если сила тока по каким-либо причинам превысила номинальные значения, происходит размыкание цепи из-за срабатывания расцепителей автоматического выключателя.

Характеристика срабатывания автоматического выключателя является очень важной характеристикой, которая описывает то, насколько время срабатывания автомата зависит от отношения силы тока, протекающего через автомат, к номинальному току автомата.

Данная характеристика сложна тем, что для ее выражения необходимо использование графиков. Автоматы с одним и тем же номиналом будут при разных превышениях тока по-разному отключаться в зависимости от типа кривой автомата (так иногда называется токовая характеристика), благодаря чему имеется возможность применять автоматы с разной характеристикой для разных типов нагрузки.

Тем самым, с одной стороны, осуществляется защитная токовая функция, а с другой стороны, обеспечивается минимальное количество ложных срабатываний – в этом и заключается важность данной характеристики.

В энергетических отраслях бывают ситуации, когда кратковременное увеличение тока не связано с появлением аварийного режима и защита не должно реагировать на такие изменения. Это же относится и к автоматам.

Читать еще:  Контакт втычной для масляных выключателей

При включении какого-нибудь мотора, к примеру, дачного насоса или пылесоса, в линии происходит достаточно большой бросок тока, который в несколько раз превышает нормальный.

По логике работы, автомат, конечно же, должен отключиться. К примеру, мотор потребляет в пусковом режиме 12 А, а в рабочем – 5. Автомат стоит на 10 А, и от 12 его вырубит. Что в таком случае делать? Если например поставить на 16 А, тогда непонятно отключится он или нет если заклинит мотор или замкнет кабель.

Можно было бы решить эту проблему, если его поставить на меньший ток, но тогда он будет срабатывать от любого движения. Вот для этого и было придумано такое понятие для автомата, как его «время токовая характеристика».

Характеристики выключателей и их группы

Для автомата существует несколько важных характеристик, по которым выбирают автомат для разных нагрузок. Одна из них характеристика срабатывания автоматических выключателей.

На графике№1 показаны различие время токовых характеристик 3 -х основных групп автоматов

Кривая характеристики показывает, как время срабатывания автомата меняется от величины отношения тока через контакты автомата к номинальному его значению. Линия зависимости отображается графически. Например, автоматы одного номинала при разных характеристиках кривых автоматических выключателей имеют разное время отключения.Также на графике №1 отмечены прямоугольниками зоны действия тепловой защиты и электромагнитной защиты автоматов.

Защита человека – превыше всего!

В заключение, скажем о ещё одном устройстве, которое должно стать головным защитным прибором в Вашем щитке. В статье мы рассмотрели аспекты защиты сети и приборов, теперь поговорим, как защитить человека. Для этого используется так называемый выключатель автоматический дифференциального тока, назначение которого кроме отслеживания токов, контролировать «утечки» и нештатные изменения в сети. Проще говоря, данный тип автомата распознаёт, что в сети происходит несанкционированное изменений характеристик, попадающих в разряд «повреждение изоляции», «возможное прикосновение человека к проводам под напряжением» и т.д.

Такое обнаружение приводит к мгновенному обесточиванию участка сети. Иногда автоматические выключатели дифференциального тока называют УЗО (Устройство защитного отключения), МДЗ (Модуль дифференцированной защиты). Они могут быть использованы в комбинации с другими автоматами. Главное отличие этого автомата в том, что он работает на защиту человека от поражения электрическим током. Наиболее актуальны такие устройства для подключения санузлов и ванн (желательно с максимальной чувствительностью) и кухонь. Но сегодня многие предпочитают ставить такие выключатели на все участки сети в квартире.

Мы надеемся, что данная статья будет Вам полезна при выборе УЗО и,как следствие, Ваша электросеть, электрические приборы будут надёжно защищены.

Автоматический выключатель характеристика B

Этот график отражает зависимость времени срабатывания всех видов защиты автомата от проходящего по нему величины тока. По оси X отображается кратность предельного тока к номинальному току – величина (I/In). По оси Y отображается время в секундах.

На графике изображены две линии кривая времени срабатывания тепловой защиты устройств автоматических выключателей) и кривая срабатывания электромагнитной защиты. Линии внизу графика отображают горячее состояние автомата, наверху показывают холодное его состояние. Пунктиром обозначены верхние значения автоматов до 32 А. Все графики составлены для рабочей температуры автоматических выключателей +30°С.


График №2 Время токовые характеристики для группы B с током превышения номинального тока в 3 – 5 раз

На графике №2 видно, что проходящий ток автомата 3ln, и он отключается через время 0, 02 сек. в подогретом состоянии, а отключается за 32 секунды в не разогретом виде, в случае автомата до 32 А, автомат выше 32А отключится за 78 сек. При токе через автомат в 5In отключение происходит за 0,01 сек. для горячей линии и за 0,03 сек. для холодного автомата.

Характеристика автомата B используется для защиты чисто активной нагрузки. Это – электропечи, освещение, обогреватели. Чтобы соблюдать селективность автоматических выключателей в складах, домах и магазинах на вводе используют автомат характеристики C, для вторичных линий освещения, бытовых электроприборов с характеристикой В, с меньшим током пуска.

Номинальная отключающая способность при коротком замыкании (Icu или Icn)

Отключающая способность низковольтного автоматического выключателя связана с коэффициентом мощности (cos φ) поврежденного участка цепи. В ряде стандартов приводятся типовые значения такого соотношения.

Отключающая способность автоматического выключателя – максимальный (ожидаемый) ток, который данный автоматический выключатель способен отключить и остаться в работоспособном состоянии. Упоминаемая в стандартах величина тока представляет собой действующее значение периодической составляющей тока замыкания, т.е. при расчете этой стандартной величины предполагается, что апериодическая составляющая тока в переходном процессе (которая всегда присутствует в наихудшем возможном случае короткого замыкания) равна нулю. Эта номинальная величина (Icu) для промышленных автоматических выключателей и (Icn) для бытовых автоматических выключателей обычно указывается в кА.

Icu (номинальная предельная отключающая способность) и Ics (номинальная эксплуатационная отключающая способность) определены в стандарте МЭК 60947-2 вместе с соотношением Ics и Icu для различных категорий использования A (мгновенное отключение) и B (отключение с выдержкой времени), рассмотренных в подразделе Другие характеристики автоматического выключателя.

Проверки для подтверждения номинальных отключающих способностей автоматических выключателей регламентируются стандартами и включают в себя:

  • коммутационные циклы, состоящие из последовательности операций, т.е. включения и отключения при коротком замыкании;
  • фазовый сдвиг между током и напряжением. Когда ток в цепи находится в фазе с напряжением питания (cos φ = 1), отключение тока осуществить легче, чем при любом другом коэффициенте мощности. Гораздо труднее осуществлять отключение тока при низких отстающих величинах cos φ,при этом отключение тока в цепи с нулевым коэффициентом мощности является самым трудным случаем.

На практике все токи короткого замыкания в системах электроснабжения возникают обычно при отстающих коэффициентах мощности, и стандарты основаны на значениях, которые обычно считаются типовыми для большинства силовых систем. В целом, чем больше ток короткого замыкания (при данном напряжении), тем ниже коэффициент мощности цепи короткого замыкания, например, рядом с генераторами или большими трансформаторами.

В таблице, приведенной на рис. H34

и взятой из стандарта МЭК 60947-2, указано соотношение между стандартными величинами cos φ для промышленных автоматических выключателей и их предельной отключающей способностью Icu.

после проведения цикла «отключение – выдержка времени — включение/ отключение» для проверки предельной отключающей способности (Icu) автоматического выключателя выполняются дополнительные испытания, имеющие целью убедиться в том, что в результате проведения этого испытания не ухудшились:

— электрическая прочность изоляции; — разъединяющая способность; — правильное срабатывание защиты от перегрузки.

Icucosφ
6 kA0,5
10 kA0,3
20 kA0,25
50 kA0,2

Рис. H34:
Соотношение между Icu и коэффициентом мощности (cos φ) цепи короткого замыкания (МЭК 60947-2)

Автоматические выключатели характеристика С

Все автоматы характеристики С имеют большее значение кратности тока к номиналу – I/In, относительно автоматов с характеристикой В, кратность от 5 до 10In. Смотрим на графике №3, при токе 5In автомат отключается в течении 0,02 секунды в разогретом виде, и за 11 сек. для холодного автомата ниже 32 ампер, и через 27 сек. отключение произойдет для автомата выше 32 А.


График №3 Время токовые характеристики для группы автоматов С

Проходящий ток в 10In вызовет отключение через 0,01 сек. для горячей линии и 0,027 сек. для холодной. С такой характеристикой автоматы устанавливают в защите двигателя с не большими пусковыми токами, для освещения, в офисах, домах, квартирах, подсобных помещениях.

Предельная коммутационная способность

Что определяет эта характеристика? Необходимо отметить, что в электрических сетях нередко случаются короткие замыкания. Это когда между фазой и нулем происходит обрыв изоляции, и ток начинает движение по этой перемычке, минуя потребителя. При этом возникают так называемые сверхтоки. Они большой величины, но краткосрочные. Так вот, предельная коммутационная способность прибора – это значение сверхтока, которое автомат (ВА 47 29) может выдержать, не теряя своей работоспособности. Конечно, он при этом разъединяет электрическую цепь.

Характеристика D автоматического выключателя

Смотрите график №4. Проходящий ток в 10In вызовет отключение через 0,015 сек. горячего режима, и за 3 сек. для холодного режима и автоматов ниже 32 ампер и 8 секунд в холодном режиме автомата выше 32 ампер. Когда ток достигает 20In, автомат сработает за 0,008 сек. в подогретом виде и 0,018 – в холодном.


График №4 Время токовые характеристики для автоматов группы D

Применение этих автоматов находит в случаях тяжелых пусков с большими пусковыми токами или с частными запусками. На всех графиках показан широкий диапазон кривых, которые обусловлены большим расхождениям параметров автоматов. Эти параметры зависят от наружной температуры и температуры автомата, зависящей от значения проходящего через него тока.

Читать еще:  Установка двойного выключателя schneider electric

Когда величина I/Iн≤1 меньше или соответствует номинальному току то, время выключения автомата будет бесконечно. Также на графике видно, что чем значительнее ток относительно номинальной величине, тем быстрее сработает автомат.

Важные выводы

  1. Получается, что если ток нагрузки, который протекает через автомат, превышает номинальный ток автомата меньше, чем в 1.13 раз, то автомат не отключится. Это обстоятельство следует учитывать при выборе кабеля.
  2. При проектировании следует учитывать, что требования п.1.7.79 ПУЭ гарантированно выполняются только в том случае, если ток короткого замыкания превышает верхнюю границу диапазона срабатывания, т.е. 5•Iном для характеристики «B», 10•Iном для характеристики «C», 20•Iном для характеристики «D». Эти величины кратности срабатывания следует использовать при проверке времени срабатывания автоматического выключателя при однофазном коротком замыкании.

Подпишитесь и получайте уведомления о новых статьях на e-mail

Класс токоограничения

При появлении сверхтоков (КЗ) изоляция проводов начинает резко нагреваться. Автомат разъединит цепь, когда сила тока достигнет своего максимального значения. За это короткое время изоляция может повредиться. Поэтому установлена еще одна характеристика, которая контролирует этот самый ток, чтобы он не дошел до своего максимума, и автомат отключился.

То есть, данный параметр влияет на безопасность эксплуатации всей электрической схемы дома, плюс долговечность и надежность проводки. По сути, класс токоограничения – это промежуток времени, при котором произойдет размыкание силовых контактов и гашение дуги в гасительной камере прибора. Отсюда и три класса:

  • 3 класс – самый высокий, то есть, быстрый. Время гашения – 2,5-6 миллисекунд.
  • 2 класс – 6-10 мс.
  • 1 класс – более 10 мс.

На корпусе прибора этот параметр обозначается в черном квадрате под обозначением коммутационной способности.

Внимание! Класс 1 на приборе не обозначается. То есть, если вы данный показатель не нашли, значит, этот автомат первого класса.

Вот такие технические характеристики у автоматического выключателя. Если в них разобраться, то можно легко подобрать под условия эксплуатации электрической схемы дома определенные приборы.

Выбор автоматического выключателя: характеристики автоматов

Многим приходилось видеть автоматический выключатель АП-50. Этот автомат присутствует в нашей жизни как фундаментальный атрибут нашего материального мира, как незримый спутник дающий свет и тепло. Многие помнят его с детства, могут не знать названия, но зрительный образ знаком почти всему населению России, да и не только.

  1. Устройство автомата АП-50
  2. Почему время-токовые характеристики неудобны на практике
  3. Технические характеристики
  4. Класс токоограничения (быстродействие отсечки)
  5. Характеристика срабатывания
  6. Модульные автоматические выключатели
  7. Класс токоограничения (быстродействие отсечки)
  8. Производители автоматических выключателей АП-50
  9. Предельная отключающая способность (ПКС).
  10. Исполнения АП50Б
  11. Категории токоограничения
  12. Подключение и привязка (программирование) дистанционного выключателя

Устройство автомата АП-50

Автоматический выключатель АП-50

Продукты данной серии выпускаются с двумя и тремя полюсами. Аппараты из первой группы рассчитаны на постоянный электроток с номинальным показателем напряжения до 220 В и переменный – до 500 В (50-60 Гц). Модели с тремя полюсами работают только с переменным током (параметры такие же, как для двухполюсных приборов). Электрическая начинка автомата помещена в пластмассовый корпус, включающий в себя съемную переднюю панель, дно и основную часть.

Выключатель имеет 4 технологических узла:

  • управляющий механизм, основанный на свободном расцеплении, с моментально срабатывающими кнопками включения и выключения;
  • камеры, гасящие электрическую дугу (расположены в нижней части устройства);
  • расцепители сверхвысоких токов – тепловой (покрыт сверху защитной пластинкой из текстолита) и электромагнитный;
  • система контактов, включающая в себя стационарные и подвижные элементы.

Магнитный расцепитель отвечает за сверхбыструю осечку в области токов короткого замыкания, а тепловой включается в перегрузочной зоне, при этом чем больше ток, тем меньше время реагирования. Заводская калибровка расцепителей производится при температуре воздуха 35 °С. Также у устройства есть входы и выходы для монтажа кабелей. Устанавливается оно на вертикальное или горизонтальное основание с помощью пары винтов. Внутри корпуса достаточно места, что позволяет установить дополнительные элементы – например, расцепитель сверхнизкого напряжения (хотя выпускаются модели, в которые он вмонтирован на заводе) или блочные контакты. Под кнопками механизма управления вмонтирован рычаг, регулирующий восприимчивость расцепителей.

Среди моделей АП-50 есть не оснащенные блок-контактами вообще, имеющие один контакт или два. В приборы, не оснащенные такой комплектующей, можно поставить ее самостоятельно.

Почему время-токовые характеристики неудобны на практике

Но всё это – общая теория, без привязки к конкретным моделям автоматических выключателей. Ведь даже зная теорию, которая изложена в статьях и ГОСТ Р 50345-2010, невозможно слёту сказать, какой ток расцепления и нерасцепления будет у автомата, у которого на лицевой стороне написано “В10”. Нужно листать ГОСТ, гуглить, вспоминать, умножать, и так далее.

Вот как я об этом рассуждаю в статье про характеристики автоматов (ссылка в начале статьи):

Когда сработает автоматический выключатель? Рассуждения у время-токовой характеристики…

И мне, и моим читателям это неудобно. Поэтому я решил создать удобные на практике таблицы, приведенные ниже. В таблицах приведены данные, заранее посчитанные на основе номинального тока и типа тока мгновенного расцепления (В, С, D).

Фактически, таблицы токов, приведенные в статье, заменяют собой графики время-токовых характеристик. Они переводят теорию по расцепителям защитных автоматов из текстовой и графической форм в табличную. Думаю (уверен), что на практике моими таблицами для выбора автоматов и расчета токов в цепи будет пользоваться гораздо удобнее, чем графиками, на которых приведены данные безотносительно к конкретным номиналам.

Технические характеристики

В исправном состоянии автомат способен переносить механические воздействия в соответствии с категорией М7, указанной в ГОСТ 17516.1. Защита от влаги у аппарата полностью отсутствует, поэтому при эксплуатации надо тщательно следить за тем, чтобы не допускать ее проникновения на корпус или рабочие узлы. Не стоит ставить прибор в помещении с высокой влажностью воздуха, в очень жарком месте (40 °С и выше), там, где выпадает роса или оседает иней, а также в местах, куда проникают лучи солнца или лучистая энергия приборов отопления.

При комнатной температуре (15-25 °С) характеристики работы теплового расцепителя имеют такой вид:

  • с током 1,05 In на протяжении часа срабатывания не возникает;
  • контакты открываются за полчаса при токе 1,35 In;
  • если на один из полюсов послать нагрузку 6 In, перегрузочный расцепитель проявит активность в течение 2-15 секунд;
  • после расцепления включить прибор следующий раз можно по прошествии 2 минут (за это время механизм остывает).

Автоматы заточены под ограниченное число включений и выключений (50 000). Максимальная способность к коммутации для токов до токов до 10 А равна 50000, для 16-25 А – 25000, для больших значений – 20000. Предельный ток, при котором включается аппарат, составляет 10 А.

Время от времени нужно чистить устройство от пыли и загрязнений, проверять положение контактов (не должно быть перекоса). Нужно регулярно обеспыливать и пространство вокруг прибора. Пыль имеет выраженные токопроводящие свойства и легко может привести к неисправности выключателя.

Класс токоограничения (быстродействие отсечки)

Время-токовые характеристики автоматических выключателей АП-50

В технической документации, поставляемой в комплекте с прибором, данные о скорости срабатывания отсечки не приводятся. Но этот параметр можно определить при практических испытаниях в пусконаладочных организациях. Правильно функционирующий выключатель генерирует отсечку за 0,01-0,015 с. Если время превышает 0,2 с, аппарат считается неисправным. Учитывая значительный ход сердечника, класс токоограничения для этой группы приборов находится в районе единицы. В ситуациях, когда данный параметр играет значительную роль, лучше приобрести автомат другой марки с большим быстродействием.

Характеристика срабатывания

Время-токовые характеристики серии аппаратов АП-50 варьируются в зависимости от показателя силы тока. Для In в 1,6,2,5 и 4 А время срабатывания при небольших цифрах кратности тока (2-4) меньше, чем для больших значений In, а при больших перегрузках – наоборот, несколько дольше. Тепловые расцепители при любых значениях тока срабатывают при перегрузке в 1,5-3 раза, а время реакции варьируется в пределах 70-300 с. Магнитные расцепители на 3,5 In включаются медленнее (до 60 с), а на 10 In – активизируются при восьмикратной и более перегрузке в течение однозначного числа секунд.

Модульные автоматические выключатели

Предназначены для защиты цепей от перегрузки и короткого замыкания.

Исполнение: стационарное (монтаж на DIN-рейку).

Рис. 6. Автоматические выключатели S260

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector