Ivalt.ru

И-Вольт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электромагнитные выключатели способ гашения дуги

Электромагнитные выключатели способ гашения дуги

Название работы: Способы гашения электрической дуги. Область применения

Предметная область: Коммуникация, связь, радиоэлектроника и цифровые приборы

Описание: Способы гашения электрической дуги. Способы гашения дуги в коммутационных аппаратах до 1 кВ. Удлинение дуги при быстром расхождении контактов: чем длинее дуга тем большее напряжение необходимо для ее существования. Деление длинной дуги на ряд коротких дуг.

Дата добавления: 2013-08-17

Размер файла: 47.5 KB

Работу скачали: 94 чел.

15. Способы гашения электрической дуги. Область применения.

Способы гашения дуги в коммутационных аппаратах до 1 кВ.

1. Удлинение дуги при быстром расхождении контактов: чем длинее дуга, тем большее напряжение необходимо для ее существования. Если напряжение источника окажется меньше, то дуга гаснет.

2. Деление длинной дуги на ряд коротких дуг.

3. Гашение дуги в узких щелях. Если дуга горит в узкой щели, образованной дугостойким материалом, то благодаря соприкосновению с холодными поверхностями происходит интенсивное охлаждение и диффузия заряженных

частиц в окружающую среду. Это приводит к быстрой деионизации и гашению дуги.

4. Движение дуги в магнитном поле. Электрическая дуга может рассматриваться как проводник с током. Если дуга находится в магнитном поле, то на нее действует сила, определяемая по правилу левой руки. Если создать магнитное поле, направленное перпендикулярно оси дуги, то она получит поступательное движение и будет затянута внутрь щели

дугогасительной камеры. В радиальном магнитном поле дуга получит вращательное движение. Магнитное поле может быть создано постоянными магнитами, специальными катушками или самим контуром токоведущих частей. Быстрое вращение и перемещение дуги способствует ее охлаждению и деионизации.

Последние два способа гашения дуги (в узких щелях и в магнитном поле) применяются также в отключающих аппаратах напряжением выше 1 кВ.

Основные способы гашения дуги в аппаратах выше 1 кВ.

1. Гашение дуги в масле. Если контакты отключающего аппарата поместить в масло, то возникающая при размыкании дуга приводит к интенсивному газообразованию и испарению масла. Вокруг дуги образуется газовый пузырь, состоящий в основном из водорода (70—80%); быстрое разложение масла приводит к повышению давления в пузыре, что способствует ее лучшему охлаждению и деионизации. Водород обладает высокими дугогасящими свойствами; соприкасаясь непосредственно со стволом дуги, он способствует ее деионизации. Внутри газового пузыря происходит непрерывное движение газа и паров масла. Гашение дуги в масле широко применяется в выключателях.

2. Газовоздушное дутье. Охлаждение дуги улучшается, если создать направленное движение газов — дутье. Дутье вдоль или поперек дуга способствует проникновению газовых частиц в ее ствол, интенсивной диффузии и охлаждению дуги. Газ создается при разложении масла дугой (масляные выключатели) или твердых газогенерирующих материалов (автогазовое дутье).

Более эффективно дутье холодным неионизированным воздухом, поступающим из специальных баллонов со сжатым воздухом (воздушные выключатели).

3. Многократный разрыв цепи тока. Отключение большого тока при высоких напряжениях затруднительно. Это объясняется тем, что при больших значениях подводимой энергии и восстанавливающегося напряжения деионизация дугового

промежутка усложняется. Поэтому в выключателях высокого напряжения применяют многократный разрыв дуги в каждой фазе. Такие выключатели имеют несколько гасительных устройств, рассчитанных на часть номинального напряжения. Число разрывов на фазу зависит от типа выключателя и его напряжения. В выключателях 500—750 кВ может быть 12 разрывов и более. Чтобы облегчить гашение дуги, восстанавливающееся напряжение должно равномерно распределяться между разрывами. Для выравнивания напряжения параллельно главным контактам выключателя Г К включают емкости или активные сопротивления.

4. Гашение дуги в вакууме. Высокоразреженный газ обладает электрической прочностью, в десятки раз большей, чем газ при атмосферном давлении. Если контакты размыкаются в вакууме, то сразу же после первого прохождения тока в дуге через нуль прочность промежутка восстанавливается и дуга не загорается вновь. Эти свойства вакуума используются в некоторых типах выключателей.

5. Гашение дуги в газах высокого давления. Воздух при давлении 2 МПа и более также обладает высокой электрической прочностью. Это позволяет создавать достаточно компактные устройства для гашения дуги в атмосфере сжатого воздуха. Еще более эффективно применение высокопрочных газов, например шестифтористой серы SFg (элегаза). Элегаз обладает не только большей электрической прочностью, чем воздух и водород, но и лучшими дугогасящими свойствами даже при атмосферном давлении. Элегаз применяется в выключателях, отделителях, короткозамыкателях и другой аппаратуре высокого

Гашение дуги в масляных выключателях.

В масляных выключателях контакты размыкаются в масле, однако вследствие высокой температуры дуги, образующейся между контактами, масло разлагается и дуговой разряд происходит в газовой среде. Приблизительно половину этого газа (по объему) составляют пары масла. Остальная часть состоит из водорода (70%) и углеводородов различного состава. Газы эти горючи, однако в масле горение невозможно из-за отсутствия кислорода. Количество масла, разлагаемого дугой, невелико, но объем образующихся газов велик. Один грамм масла дает приблизительно 1500 см3 газа, приведенного к комнатной температуре и атмосферному давлению. Гашение дуги в масляных выключателях происходит наиболее эффективно при применении гасительных камер, которые ограничивают зону дуги, способствуют повышению давления в этой зоне и образованию газового дутья сквозь дуговой столб.

Гашение дуги в элегазовых выключателях

Элегаз (SFg — шестифтористая сера) представляет собой инертный газ, плотность которого превышает плотность воздуха в 5 раз. Электрическая прочность элегаза в 2—3 раза выше прочности воздуха; при давлении 0,2 МПа электрическая прочность элегаза сравнима с прочностью масла. В элегазе при атмосферном давлении может быть погашена дуга с током, который в 100 раз превышает ток, отключаемый в воздухе при тех же условиях. Способность элегаза гасить дугу объясняется тем. что его молекулы улавливают электроны дугового столба и образуют относительно неподвижные отрицательные ионы. Потеря электронов делает дугу неустойчивой, и она легко гаснет. В струе элегаза поглощение электронов из дугового столба происходит

Читать еще:  Автоматический выключатель однополюсный 10а 16а

еще интенсивнее. В элегазовых выключателях применяют автопневматические дугогасительные устройства, в которых газ в процессе отключения сжимается поршневым устройством и направляется в зону дуги. Элегазовый выключатель представляет

собой замкнутую систему без выброса газа наружу.

Гашение дуги в вакуумных выключателях

Электрическая прочность вакуумного промежутка во много раз больше, чем воздушного промежутка при атмосферном давлении. Это свойство используется в вакуумных дугогасительных камерах. Рабочие контакты имеют вид полых усеченных конусов с радиальными прорезями. Такая форма контактов при размыкании создает радиальное электродинамическое усилие, действующее на возникающую дугу и заставляющее перемещаться ее через зазоры на дугогасительные контакты. Контакты представляют собой диски, разрезанные спиральными прорезями на три сектора, по которым движется дуга. Материал

контактов подобран так, чтобы уменьшить количество испаряющегося металла. Вследствие глубокого вакуума происходит быстрая диффузия заряженных частиц в окружающее пространство и при первом переходе тока через нуль дуга гаснет. Подвод тока к контактам осуществляется с помощью медных стержней. Подвижный контакт крепится к верхнему фланцу с помощью сильфона из нержавеющей стали. Сильфон служит для обеспечения герметичности вакуумной камеры. Металлические экраны служат для выравнивания электрического поля и для защиты керамического корпуса от попадания паров металла,

образующихся при гашении дуги.

СПОСОБЫ ГАШЕНИЯ ДУГИ

Для дуг постоянного и переменного токов существуют следующие способы гашения дуги:

  1. МЕХАНИЧЕСКОЕ РАСТЯГИВАНИЕ (только для “—” тока). Простейший способ гашения, но малоэффективен. Применим только в слаботочной аппаратуре.
  2. ДЕЛЕНИЕ ДУГИ НА РЯД КОРОТКИХ ДУГ (применяется как на постоянном, так и на переменном токе). Это гашение дуги с помощью дугогасительной решетки. Способ этот предложен еще в начале века русским ученым М. О. Доливо-Добровольским и до сих пор широко применяется. При расхождении контактов возникшая между ними дуга под воздействием магнитного поля движется на пластины и разбивается на ряд коротких дуг.

Т.к. на переменном токе деионная решетка работает эффективнее, чем на постоянном, а аппараты могут использоваться как на “

” так и на “—” токе (например, автоматы) число пластин рассчитывают из условия гашения дуги “—” тока.

  1. ГАШЕНИЕ ДУГИ ВЫСОКИМ ДАВЛЕНИЕМ (применяется как на постоянном, так и на переменном токе). С ростом давления возрастает плотность газа, при этом увеличивается теплопроводность и отвод тепла от дуги. На этом принципе основано гашение дуги в предохранителях и других аппаратах низкого напряжения. (В некоторых аппаратах стенки дугогасящей камеры делаются из газогенерирующих материалов – например, фибры. Благодаря высокой температуре дуги такие стенки выделяют газ и давление в объеме поднимается до 10-15 МПа.).
  2. ГАШЕНИЕ ДУГИ В ПОТОКЕ СЖАТОГО ВОЗДУХА . В электрических аппаратах высокого напряжения коммутируются токи в десятки килоампер при напряжении 10 6 В. Для решения такой сложной задачи используется воздействие на электрическую дугу потока сжатого воздуха или других газов. Сжатый воздух обладает высокой плотностью и теплопроводностью. Омывая дугу с большой скоростью, он охлаждает ее и при прохождении тока через нуль обеспечивает деионизацию дугового столба. Воздух при высоком давлении обладает также высокой электрической прочностью, что создает высокую скорость нарастания электрической прочности промежутка.
  3. ГАШЕНИЕ ДУГИ В ТРАНСФОРМАТОРНОМ МАСЛЕ . Этот способ гашения дуги нашел широкое применение в выключателях переменного тока на высокое напряжение. Контакты выключателя погружаются в масло. Возникающая при разрыве дуга (5000-6000 0 С) приводит к очень интенсивному испарению окружающего масла с диссоциацией его паров. Вокруг дуги образуется газовая оболочка – газовый пузырь, состоящий в основном из водорода (70-80% газов пузыря) и паров масла. Водород, обладающий наивысшими среди газов дугогасящими свойствами (обладает исключительно высокой теплопроводностью), наиболее тесно соприкасается со стволом дуги. Выделяемые с громадной скоростью газы проникают непосредственно в зону ствола дуги, вызывают перемешивание холодного и горячего газа в пузыре, создают интенсивное охлаждение и деионизацию промежутка. Быстрое разложение масла приводит к повышению давления внутри пузыря, что также способствует гашению дуги.
  4. ГАШЕНИЕ ДУГИ В ВАКУУМНОЙ СРЕДЕ (применяется как на постоянном, так и на переменном токе). В вакуумном ДУ (дугогасительном устройстве) контакты расходятся в среде с давлением 10 -4 Па (10 -6 мм рт.ст.), при котором плотность воздуха мала. Длина свободного пробега молекул достигает 50 и электронов – 300 м. В вакууме очень высокая скорость диффузии из-за большой разницы плотностей частиц в дуге и окружающем ее вакууме. Практически через 10 мкс после нуля тока между контактами восстанавливается электрическая прочность вакуума. Быстрая диффузия частиц, высокие электрическая прочность вакуума и скорость ее восстановления обеспечивают гашение дуги при первом прохождении тока через нуль. Вакуумные ДУ являются в настоящее время наиболее эффективными и долговечными. Их срок службы достигает 25 лет.
  5. ГАШЕНИЕ ДУГИ ПОД ВОЗДЕЙСТВИЕМ МАГНИТНОГО ПОЛЯ (применяется как на постоянном, так и на переменном токе). Электрическая дуга является своеобразным проводником с током, который может взаимодействовать с магнитным полем. Сила взаимодействия между током дуги и магнитным полем перемещает дугу, создается так называемое магнитное дутье. В ДУ с магнитным дутьем может быть применено либо последовательное либо параллельное подключение катушки.

реферат Виды дугогасящих устройств, классификация их по способу воздействия на дугу

Условия возникновения, горения и способы гашения дуги в коммутационных аппаратах до 1 кВ и выше 1 кВ. Искусственные меры охлаждения дугового пространства и уменьшения числа заряженных частиц. Гашение дуги в масляных, элегазовых и вакуумных выключателях.

Нажав на кнопку «Скачать архив», вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Читать еще:  Выключатель для алюминиевых проводов

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку «Скачать архив»

РубрикаФизика и энергетика
Видреферат
Языкрусский
Дата добавления20.02.2010
Размер файла29,8 K
  • посмотреть текст работы
  • полная информация о работе

Подобные документы

Выключатели нагрузки (ВН), предназначенные для отключения токов нормального режима. Принцип действия электромагнитного выключателя. Мероприятия по предотвращению отказов выключателей. Гашение электрической дуги в элегазовых и масляных выключателях.

презентация [705,0 K], добавлен 04.10.2012

Основные достоинства элегазового оборудования, определяемые уникальными физико-химическими свойствами элегаза. Принципиальное отличие элегазовых выключателей от других типов. Гашение дуги в выключателях типа LF. Измерение сопротивления изоляции.

реферат [3,5 M], добавлен 14.01.2015

Вакуумные коммутационные аппараты. Технология монтажа вакуумных выключателей как надежного способа гашения электрической дуги. Подготовка к использованию по назначению. Технология технического обслуживания оборудования, его периодические испытания.

курсовая работа [310,1 K], добавлен 26.05.2015

Описание конструкции воздушных выключателей. Клапан отсечки и электропневматическая схема воздушного выключателя. Принцип осуществления процесса гашения дуги, типы гасительных камер, система вентиляции. Назначение отделителей в воздушных выключателях.

лабораторная работа [4,6 M], добавлен 17.10.2013

Ускорители заряженных частиц как устройства, в которых под действием электрических и магнитных полей создаются и управляются пучки высокоэнергетичных заряженных частиц. Общая характеристика высоковольтного генератора Ван-де-Граафа, знакомство с функциями.

презентация [4,2 M], добавлен 14.03.2016

Ускорители заряженных частиц — устройства для получения заряженных частиц больших энергий, один из основных инструментов современной физики. Проектирование и испытание предшественников адронного коллайдера, поиск возможности увеличения мощности систем.

реферат [685,8 K], добавлен 01.12.2010

Взаимодействие заряженных частиц и со средой. Детектирование. Определение граничной энергии бета-спектра методом поглощения. Взаимодействие заряженных частиц со средой. Пробег заряженных частиц в веществе. Ядерное взаимодействие. Тормозное излучение.

курсовая работа [1,1 M], добавлен 06.02.2008

Исследование гашение дуги в контакторах постоянного тока

Лабораторная работа №1

Тема: «Изучение и исследование работы

контакторов посто­янного и переменного тока.»

Цель работы: Изучить конструкции, принцип действия контакторов постоянного и переменного тока. Исследовать схемы включения контакторов и снятьих параметры.

Общие сведения

Контакторы – это аппараты дистанционного действия, предназна­ченные для частых включений и отключений силовых электрических це­пей до 1000В в нормальных режимах работы. В зависимости от рода привода контактной системы различают контакторы:

1) электромагнитные, контактная система которых приводится в действие при помощи электромагнита;

2) пневматические, контактная система которых приводится в действие при помощи сжатого воздуха;

3) гидравлические, контактная система которых приводится в действие при помощи жидкости.

Электромагнитные контакторы получили наибольшее распростране­ние и являются основными силовыми аппаратами современных схем ав­томатизированного электропривода. Они предназначены для работы в сетях:

1. постоянного тока – силовые и ускорения;

2. переменного тока промышленной частоты (50-60 Гц);

3. переменного тока повышенной частоты (до 10000 Гц).

Магнитная система (привод) контактора может по роду тока от­личаться от сети (главных контактов). Например, она может быть по­стоянного тока у контакторов переменного тока, переменного тока промышленной частоты или постоянного тока у контакторов на повы­шенную частоту.

По характеру размыкания цепи различают контакторы линейные, которые осуществляют замыкание и размыкание различных элементов цепей, и контакторы ускорения, которые служат для пере­ключения ступеней пускового сопротивления.

Исследование гашение дуги в контакторах постоянного тока.

Наибольшее распространение для гашения дуги в контакторах по­лучил способ магнитного дутья. В результате увеличения длины дуги и интенсивного охлаждения ее за счет быстрого движения в воздухе сопротивление дуги резко возрастает, что ведет к быстрой деионизации дугового промежутка и гашению дуги. В значительной степени гашению дуги способствует обдуваниеи, как следствие, охлаждение потоками воздуха, возникаю­щими в дугогасительной камере под действием высокой температуры дуги.

Рис. 1. Схема для исследования контактора постоянного тока.

ср – напряжение срабатывания контактора, т.е. то минималь­ное напряжение, которое будучи подано на втягивающую катушку контактора, вызывает его срабатывание;

ср – ток срабатывания контактора;

ср.н номинальный ток срабатывания контактора при номиналь­ном напряжении;

н номинальный ток втягивающей катушки;

н мощность, потребляемую катушкой при номинальном на­пряжении;

в напряжение возврата, то максимальное напряжение, при котором контактор размыкает свои силовые контакты, т.е. возвращается в исходное положение;

Установить разницу между I­н и I­ср.н , найти их кратность К = I­ср.н / I­н.

Что такое электрическая дуга и как она возникает

Образование дуги, её строение и свойства

Представим, что мы в лаборатории проводим эксперимент. У нас есть два проводника, например, металлических гвоздя. Расположим их острием друг к другу на небольшом расстоянии и подключим к гвоздям выводы регулируемого источника напряжения. Если постепенно увеличивать напряжение источника питания, то при определенном его значении мы увидим искры, после чего образуется устойчивое свечение подобное молнии.

Читать еще:  Бокс пластиковый навесной для автоматических выключателей

Таким образом можно наблюдать процесс её образования. Свечение, которое образуется между электродами — это плазма. Фактически это и есть электрическая дуга или протекание электрического тока через газовую среду между электродами. На рисунке ниже вы видите её строение и вольт-амперную характеристику:

А здесь – приблизительные величины температур:

Почему возникает электрическая дуга

Всё очень просто, мы рассматривали в статье об электрическом поле, а также в статье о распределении зарядов в проводнике, что если любое проводящее тело (стальной гвоздь, например) внести в электрическое поле — на его поверхности начнут скапливаться заряды. При том, чем меньше радиус изгиба поверхности, тем их больше скапливается. Говоря простым языком — заряды скапливаются на острие гвоздя.

Между нашими электродами воздух — это газ. Под действием электрического поля происходит его ионизация. В результате всего этого возникают условия для образования электрической дуги.

Напряжение, при котором возникает дуга, зависит от конкретной среды и её состояния: давления, температуры и прочих факторов.

Интересно: по одной из версий это явление так называется из-за её формы. Дело в том, что в процессе горения разряда воздух или другой окружающий её газ разогревается и поднимается вверх, в результате чего происходит искажение прямолинейной формы и мы видим дугу или арку.

Для зажигания дуги нужно либо преодолеть напряжение пробоя среды между электродами, либо разорвать электрическую цепь. Если в цепи есть большая индуктивность, то, согласно законам коммутации, ток в ней не может прерваться мгновенно, он будет протекать и далее. В связи с этим будет возрастать напряжение между разъединенными контактами, а дуга будет гореть пока не исчезнет напряжение и не рассеется энергия, накопленная в магнитном поле катушки индуктивности.

Рассмотрим условия зажигания и горения:

Между электродами должен быть воздух или другой газ. Для преодоления напряжения пробоя среды потребуется высокое напряжение в десятки тысяч вольт – это зависит от расстояния между электродами и других факторов. Для поддержания горения дуги достаточно 50-60 Вольт и тока в 10 и больше Ампер. Конкретные величины зависят от окружающей среды, формы электродов и расстояния между ними.

Вред и борьба с ней

Мы рассмотрели причины возникновения электрической дуги, теперь давайте разберемся какой вред она наносит и способы её гашения. Электрическая дуга наносит вред коммутационной аппаратуре. Вы замечали, что, если включить мощный электроприбор в сеть и через какое-то время выдернуть вилку из розетки — происходит небольшая вспышка. Это дуга образуется между контактами вилки и розетки в результате разрыва электрической цепи.

Важно! Во время горения электрической дуги выделяется много тепла, температура её горения достигает значений более 3000 градусов Цельсия. В высоковольтных цепях длина дуги достигает метра и более. Возникает опасность как нанесения вреда здоровью людей, так и состоянию оборудования.

Тоже самое происходит и в выключателях освещения, другой коммутационной аппаратуре среди которых:

  • автоматические выключатели;
  • магнитные пускатели;
  • контакторы и прочее.

В аппаратах, которые используются в сетях 0,4 кВ, в том числе и привычные 220 В, используют специальные средства защиты – дугогасительные камеры. Они нужны чтобы уменьшить вред, наносимый контактам.

В общем виде дугогасительная камера представляет собой набор проводящих перегородок особой конфигурации и формы, скрепленных стенками из диэлектрического материала.

При размыкании контактов образовавшаяся плазма изгибается в сторону камеры дугогашения, где разъединяется на небольшие участки. В результате она охлаждается и гасится.

В высоковольтных сетях используют масляные, вакуумные, газовые выключатели. В масляном выключателе гашение происходит коммутацией контактов в масляной ванне. При горении электрической дуги в масле оно разлагается на водород и газы. Вокруг контактов образуется газовый пузырь, который стремиться вырваться из камеры с большой скоростью и дуга охлаждается, так как водород обладает хорошей теплопроводностью.

В вакуумных выключателях не ионизируются газы и нет условий для горения дуги. Также есть выключатели, заполненные газом под высоким давлением. При образовании электрической дуги температура в них не повышается, повышается давление, а из-за этого уменьшается ионизация газов или происходит деионизация. Перспективным направлением считаются элегазовые выключатели.

Также возможна коммутация при нулевом значении переменного тока.

Полезное применение

Рассмотренное явление нашло и целый ряд полезных применений, например:

  1. Осветительные приборы. Например, дугоразрядные лампы (ДРЛ, ксеноновые и другие виды). Если добавить на электроды соли определенных металлов — цвет электрической дуги изменится.
  2. Электродуговая сварка. При касании электродом поверхности металла протекает высокий ток, который разогревает металл. Когда вы отрываете электрод, ток не может прерваться, разогретые поверхности эмитируют электроды и возникает дуга. При оплавлении металлических свариваемых поверхностей и расплавлении самого электрода возможно соединение двух частей или их разрезание. Есть различные виды сварки, например, с использованием электродов или газа — углекислого или аргона. Она используется повсеместно и внесла огромный вклад в жилое и промышленное строительство.
  3. Дуговая плавка. Электрическая дуга зависит от электрических параметров источников питания, таким образом можно регулировать её горение. Благодаря высокой температуре удается расплавить большое число металлов.

Напоследок рекомендуем просмотреть полезное видео по теме статьи:

Теперь вы знаете, что такое электрическая дуга, какие причины возникновения данного явления и возможные сферы применения. Надеемся, предоставленная информация была для вас понятной и полезной!

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector