Ivalt.ru

И-Вольт
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Автоматический выключатель или автоматический пускатель

Принцип работы автоматического выключателя

Для защиты бытовых электрических цепей обычно используются автоматические выключатели модульной конструкции. Компактность, легкость монтажа и замены, в случае необходимости, объясняет их широкое распространение.

Внешне такой автомат представляет собой корпус из термостойкой пластмассы. На лицевой поверхности расположена рукоятка включения и выключения, сзади – фиксатор-защелка для крепления на DIN-рейке, а сверху и снизу – винтовые клеммы. В данной статье рассмотрим принцип работы автоматического выключателя.

Как работает автоматический выключатель?

В режиме штатной работы через автомат протекает ток, меньший или равный номинальному значению. Питающее напряжение от внешней сети подается на верхнюю клемму, соединенную с неподвижным контактом. С неподвижного контакта ток поступает на замкнутый с ним подвижный контакт, а от него, через гибкий медный проводник – на катушку соленоида. После соленоида ток подается на тепловой расцепитель и уже после него – на нижнюю клемму, с подключенной к ней сетью нагрузки.

В аварийных режимах автоматический выключатель отключает защищаемую цепь за счет срабатывания механизма свободного расцепления, приводимого в действие тепловым или электромагнитным расцепителем. Причиной такого срабатывания является перегрузка или короткое замыкание.

Тепловой расцепитель – это биметаллическая пластина, состоящая из двух слоев сплавов с различными коэффициентами термического расширения. При прохождении электрического тока пластина нагревается и изгибается в сторону слоя с меньшим коэффициентом термического расширения. При превышении заданного значения силы тока, изгиб пластины достигает величины, достаточной для приведения в действие механизма расцепления, и цепь размыкается, отсекая защищаемую нагрузку.

Электромагнитный расцепитель состоит из соленоида с подвижным стальным сердечником, удерживаемым пружиной. При превышении заданного значения тока, по закону электромагнитной индукции в катушке наводится электромагнитное поле, под действием которого сердечник втягивается внутрь катушки соленоида, преодолевая сопротивление пружины, и вызывает срабатывание механизма расцепления. В нормальном режиме работы в катушке также наводится магнитное поле, но его силы недостаточно, чтобы преодолеть сопротивление пружины и втянуть сердечник.

Как работает автомат в режиме перегрузки

Режим перегрузки возникает, когда ток в подключенной к автомату цепи превышает номинальное значение, на которое рассчитан автоматический выключатель. При этом повышенный ток, проходящий через тепловой расцепитель, вызывает повышение температуры биметаллической пластины и, соответственно, увеличение ее изгиба вплоть до срабатывания механизма расцепления. Автомат отключается и размыкает цепь.

Срабатывание тепловой защиты не происходит мгновенно, поскольку на разогрев биметаллической пластины потребуется некоторое время. Это время может варьироваться в зависимости от величины превышения номинального значения тока от нескольких секунд до часа.

Такая задержка позволяет избежать отключения питания при случайных и непродолжительных повышениях тока в цепи (например, при включении электродвигателей которые имеют большие пусковые токи).

Минимальное значение тока, при котором должен сработать тепловой расцепитель, устанавливается при помощи регулировочного винта на заводе-изготовителе. Обычно это значение в 1,13-1,45 раз превышает номинал, указанный на маркировке автомата.

На величину тока, при котором сработает тепловая защита, влияет и температура окружающей среды. В жарком помещении биметаллическая пластина прогреется и изогнется до срабатывания при меньшем токе. А в помещениях с низкими температурами ток, при котором сработает тепловой расцепитель, может оказаться выше допустимого.

Причиной перегрузки сети является подключение к ней потребителей, суммарная мощность которых превышает расчетную мощность защищаемой сети. Одновременное включение различных видов мощной бытовой техники (кондиционер, электрическая плита, стиральная и посудомоечная машина, утюг, электрочайник и т.д.) – вполне может привести к срабатыванию теплового расцепителя.

В этом случае определитесь, какие из потребителей можно отключить. И не спешите снова включать автомат. Вы все равно не сможете взвести его в рабочее положение, пока он не остынет, а биметаллическая пластина расцепителя не вернется в свое исходное состояние. Теперь вы знаете как работает автоматический выключатель при перегрузках

Как работает автомат в режиме короткого замыкания

В случае короткого замыкания принцип работы автоматического выключателя иной. При коротком замыкании ток в цепи резко и многократно возрастает до значений, способных расплавить проводку, а точнее изоляцию электропроводки. Для того чтобы предотвратить такое развитие событий необходимо мгновенно разорвать цепь. Электромагнитный расцепитель именно так и срабатывает.

Электромагнитный расцепитель представляет собой катушку соленоида, внутри которой расположен стальной сердечник, удерживаемый в фиксированном положении пружиной.

Многократное возрастание тока в обмотке соленоида, происходящее при коротком замыкании в цепи, приводит к пропорциональному возрастанию магнитного потока, под действием которого сердечник втягивается в катушку соленоида, преодолевая сопротивление пружины, и нажимает на спусковую планку механизма расцепления. Силовые контакты автомата размыкаются, прерывая питание аварийного участка цепи.

Таким образом, срабатывание электромагнитного расцепителя защищает от возгорания и разрушения электропроводку, замкнувший электроприбор и сам автомат. Время его срабатывания составляет порядка 0,02 секунды, и электропроводка не успевает разогреться до опасных температур.

В момент размыкания силовых контактов автомата, когда по ним проходит большой ток, между ними возникает электрическая дуга, температура которой может достигать 3000 градусов.

Чтобы защитить контакты и другие детали автомата от разрушительного воздействия этой дуги, в конструкции автомата предусмотрена дугогасительная камера. Дугогасительная камера представляет собой решетку из набора металлических пластин, которые изолированы друг от друга.

Дуга возникает в месте размыкания контакта, а затем один ее конец движется вместе с подвижным контактом, а второй скользит сначала по неподвижному контакту, а потом по соединенному с ним проводнику, ведущему к задней стенке дугогасительной камеры.

Там она делится (дробится) на пластинах дугогасительной камеры, слабеет и гаснет. В нижней части автомата предусмотрены специальные отверстия для отвода газов, образующихся при горении дуги.

В случае отключения автомата при срабатывании электромагнитного расцепителя, вы не сможете пользоваться электричеством до тех пор пока не найдете и не устраните причину короткого замыкания. Вероятнее всего причина в неисправности одного из потребителей.

Отключите все потребители и попробуйте включить автомат. Если вам это удалось и автомат не выбивает, значит, действительно – виноват один из потребителей и вам осталось выяснить какой именно. Если же автомат и с отключенными потребителями снова выбивает, значит все гораздо сложнее, и мы имеем дело с пробоем изоляции проводки. Придется искать, где это произошло.

Читать еще:  Одно полюсные модульные автоматические выключатели авв

Вот таков принцип работы автоматического выключателя в условиях различных аварийных ситуаций.

Если отключение автоматического выключателя стало для вас постоянной проблемой, не пытайтесь решить ее установкой автомата с большим номинальным током.

Автоматы устанавливаются с учетом сечения вашей проводки, и, значит, больший ток в вашей сети просто не допускается. Найти решение проблемы можно только после полного обследования системы электроснабжения вашего жилища профессионалами.

Контактор модульный. Описание, применение, параметры.

Контактор модульный или, как его еще часто называют магнитный пускатель или реле. При грамотном применении в схемах электрощитов модульный контактор может быть очень полезным прибором, и в том числе незаменимым при проектировании АВР.

Я в своих электрощитах, как правило, использую контактор для дистанционного (удаленного) отключения/включения потребителей. Например, для управления НЕотключаемыми линиями в квартире или частном доме, а также для управления системами отопления совместно с контроллером GSM “Кситал” и других схожих реле, которые могут давать команду на включение или отключение контактору дистанционно при помощи связи GSM.

На производстве обычно контакторы (магнитные пускатели) используют для управления двигателями, насосами, а также в схемах дистанционного управления многими другими приборами и освещением.

Контактор модульный

Контактор ABB представляет собой устройство, контакты которого замыкаются или размыкаются катушкой (электромагнитом). Подали напряжение на катушку (электромагнит), и контакты самого контактора в зависимости от его исполнения или замкнулись или разомкнулись. Катушки контактора рассчитаны на напряжение, как переменного тока (АС), так и постоянного (DC), поэтому при выборе контактора обращайте внимание на этот параметр. Напряжение можно подключать от 12 до 415 В, на это тоже обязательно надо обратить внимание, т.к. модульный контактор, рассчитанный на напряжение 12В при подаче на него 220 В просто сгорит.

Модульные контакторы ABB делятся на две серии: ESB и EN. Отличие в том, что контакторы ESB управляются только подачей или отключением напряжения и рассчитаны на токи 20, 24, 40 и 63А, а контакторы EN имеют дополнительное ручное управление (включение/отключение) и рассчитаны на токи до 40А.

У контакторов два вида контактов. Одни контакты – это силовые контакты, которые размыкают или замыкают силовые цепи, а другие – контакты управления самим контактором, т.е. непосредственно дают команду на замыкание/размыкание силовых.

Контакты управления А1-А2 обозначаются одинаково на всех контакторах. Именно к ним надо подать или снять напряжение, чтобы силовые контакты размыкались или замыкались.

Силовые контакты, которые включают или отключают нагрузку, подключенную к контактору, всегда парные 1-2, 3-4, 5-6, 7-8 и т.д.

Количество пар силовых контактов у магнитных пускателей ABB чётное, или два или четыре. Обозначаются или НО (нормально открытый) или НЗ (нормально закрытый). Т.е. при отсутствии напряжения на катушке НО – разомкнуты, при подаче напряжения на катушку НО замыкаются, ну а НЗ соответственно наоборот. Вариации бывают разными 2НО (два открытых контакта), 3НО-1НЗ (три открытых + один закрытый) и т.д., и обозначаются на корпусе контактора цифрами 40 (четыре контакта НО), 20 (два контакта НО), 22 (два НО и два НЗ), 02 (два НЗ).

Например, из названия контактора ABB EN40-40N следует, что этот модульный контактор рассчитан на номинальный ток 40А и имеет четыре НО (нормально открытых) контакта. Также указано, что катушка контактора рассчитана на напряжение 230В переменного или постоянного тока.

Для защиты катушки управления контактора правильно ставить в её цепь автоматический выключатель, и т.к. мощность потребляемая катушкой мизерная, то номинал автомата лучше брать не более 1А .

Контактор ESB 20А занимает 1 модуль, 24А – 2 модуля, 40 и 63А – занимают по 3 модуля на дин-рейке.

Контакторы бывают также и с ручным управлением, точнее с комбинированным. Т.е. можно при помощи переключателя включать и выключать модульный контактор руками, передвигая рычажок. На фото ниже показан контактор ABB EN-40-4НО с ручным управлением.

К контакторам, как и к другим модульным приборам ведущих серий ABB, Легранд, Шнейдер Электрик, Хагер, можно прикреплять по бокам дополнительный контакт. Только следует учитывать, что это “не совсем полноценные” контакты, у них номинальный ток только до 6А.

Ниже привожу пример дополнительного контакта к контактору Legrand. В дополнительном контакте на самом деле имеется два контакта, один НЗ, другой НО.

Сцепить модульный контактор и дополнительный контакт несложно. Схема сцепления устройств между собой изображена на самом дополнительном контакте. Важно, чтобы отверстие в контакторе и “рычажок” дополнительного контакта точно совпали.

А так выглядят совмещенные приборы, в том числе, и уже подключенные в электрическом щитке.

Схема подключения модульного контактора.

Ниже приведена схема подключения модульного контактора. Основная суть подключения – это подать питание на катушку (контакты А1-А2), которые будут размыкать или замыкать силовые контакты НО и НЗ контактора.

Контактор модульный Legrand и Schneider Electric.

Контакторы Легран CX и Шнейдер Электрик iCT по назначению, бесшумности и техническим характеристикам идентичны ABB, но имеют и несколько преимуществ:

  1. Контактор модульный АВВ 40 и 63А имеет строго 4 контакта, меньше не бывает, и занимает три модуля. У Легранда и Шнейдер Электрик есть контакторы на 40 и 63А только с двумя контактами, что достаточно при однофазной электрической сети, т.к. они занимают меньше места в электрощите (два модуля), что на целый модуль меньше, чем у АВВ.
  2. Такой модульный контактор Legrand или Schneider Electric, который занимают меньше места, и стоит подешевле, чем пускатель АВВ.
    Спасибо за внимание!

Автоматические выключатели. Виды и устройство. Работа и применение

Главная задача выключателей – разъединять цепь при высоких нагрузках в случае неисправностей сети. Для этого они были придуманы еще в позапрошлом веке. Со временем конструкция выключателей совершенствовалась, и на сегодняшний день существует разделение их на 6 групп только по току отключения, не говоря уже о других характеристиках и это автоматические выключатели.

Назначение


Автоматические выключатели часто называют автоматами. Они позволяют вручную коммутировать электрическую сеть. Одним нажатием клавиши создается новая цепь питания, а при необходимости отключается оборудование. Это удобно на бытовом уровне и в условиях промышленного производства. Когда надо обесточить устройство или отсечь от питания какую-то часть цепи, просто опускается клавиша выключателя, и можно производить работы. Затем возвращаем клавишу на место, и все функционирует, как прежде.

Читать еще:  Выключатель авв pros234r с6 400в

Но основная задача, все-таки, состоит в защите сети от коротких замыканий и перегрузки. Автоматы первые принимают на себя удар при перегрузках. Они размыкают цепь в нужный момент и не дают загореться проводке.

Внешне простейший выключатель представляет собой пластиковую коробку с контактами и рычагом включения/выключения. В коробке находится механизм, отвечающий за работу системы. Чтобы выключатель удобно было крепить к DIN-рейке, сзади на корпусе предусмотрены защелки.

Устанавливают автоматы на входе в дом, квартиру или иное строение, помещая их в вводном и распределительном щитке.

Автоматы рассчитаны на определенное количество отключений, поэтому злоупотреблять принудительным срабатыванием не стоит. Если требуется часто переключать сеть, то устанавливают реле или контакторы.

Ток мгновенного расцепления

Основной характеристикой выключателя считается ток мгновенного расцепления. Это ток, при котором устройство срабатывает и разъединяет цепь. В зависимости от тока расцепления выключатели разделяют на несколько групп.

Наиболее используемые группы:
  • B, ток отключения составляет 3-5 номинальных токов (In) включительно.
  • C, ток отключения более 5*In-10*In включительно. Наиболее универсальные выключатели.
  • D, ток отключения более 10* In-20* In включительно.

Еще существуют группы L, Z, K, в которых токи мгновенного расцепления достигают большого значения. По европейским стандартам предусмотрена группа A для самых малых перегрузок до 3*In.

Автоматические выключатели группы B применяют для установки в местах со старой проводкой, там, где присутствуют лампы накаливания, электрические печки, обогреватели.

Автоматические выключатели из группы C используются чаще всего. Их устанавливают в квартирах и учреждениях с люминесцентными лампами, кондиционерами, стиральными машинами, холодильниками и прочей бытовой техникой.

Группу D применяют для защиты электродвигателей, которые обычно стоят на промышленных устройствах, таких как компрессоры, насосы, подъемники.

Использовать автоматы из группы D для бытовых потребностей вместо группы C нельзя, потому что время срабатывания выключателя у разных групп разное.

После того как автомат сработал, нельзя спешить сразу его включать. Вначале выясняют причину разъединения, устраняют ее, после чего возвращают выключатель в исходное положение.

Маркировка


На каждом выключателе стоит маркировка, которая позволяет определить основные параметры.

Латинская буква (B, C, D), как можно догадаться из вышесказанного, означает группу по току перегрузке. Следом за буквой идет цифра. Она указывает, на какой номинальный ток, выраженный в амперах, рассчитан прибор. На этот показатель в первую очередь обращают внимание, когда выбирают автомат. Какое значение он должен иметь, будет описано в следующем разделе.

Ниже стоит трехзначное число, обведенное в прямоугольную рамку. Это ток короткого замыкания, выраженный в амперах. Его также называют отключающей способностью. Это максимальный ток, при котором автомат срабатывает, выполняя свои функции. Для квартир и частных домов выбирают устройства с отключающей способностью 4500, 6000 А иногда 10000 А.

Предпочтение отдают 6000 или 10000 А, поскольку у таких автоматов больше возможностей, их выгоднее использовать. Отличие в цене мизерное, а уровень безопасности и срок службы выше.

Еще ниже под отключающей способностью стоит однозначное число в квадратике. Оно указывает на класс токоограничения. Чем выше класс, тем быстрее прибор срабатывает при коротком замыкании.

Лучшие выключатели имеют 3-й класс, но встречаются приборы и 2-ого класса (на них отмечено число 2).

Число 3 говорит о том, что прибор срабатывает на отсечке синусоиды тока, равной 1/3 полупериода. Если взглянуть на синусоиду, то станет понятно, что в этом случае ток не успевает достигнуть максимального значения.

На каждом автоматическом выключателе вверху стоит логотип производителя, что позволяет быстро найти любимую торговую марку. Также указывается напряжение, на которое рассчитан прибор, и его принципиальная схема.

Выбор автоматов
Выбрать автоматические выключатели не так уж сложно, как можно подумать. Для этого надо обращать внимание на такие параметры:
  • Номинальное напряжение автомата, которое должно быть равно и больше напряжению домашней (промышленной) сети.
  • Максимальный и номинальный ток.
  • Количество полюсов (зависит от фазности сети).
  • Условия, в которых будет работать выключатель, то есть особенности проводки и нагрузки.

Если сеть однофазная, то устанавливают 1-о и 2-х полюсные автоматы. Для трехфазной сети применяют 3-х и 4-х полюсные автоматы.

Чтобы правильно выбрать автоматический выключатель, надо знать сечение провода, который идет за ним, и суммарную мощность всех приборов, то есть нагрузку.

Рассчитать максимальный ток просто. Для этого надо воспользоваться законом Ома и вспомнить, что мощность равна произведению напряжения на ток. Получается:

I=P/U, где P – мощность всех приборов.

Напряжение домашней сети составляет 220 В. Средняя мощность бытовых приборов в современной квартире с газовой плитой составляет 3 кВт, а в квартире с электроплитой 7 кВт. Но можно провести расчет индивидуально, чтобы быть более точным.

Допустим P=4 кВт. Получаем:

I=4000/220=18,2 А

У автоматов есть своя шкала номинальных токов, на которые они рассчитаны (4, 6, 10, 16, 25, 32, 40, 63, 100, 160 Ампер). Выбирать всегда надо автоматы с большим значением. В данном случае это 25 А.

Материал и площадь сечения проводки

Особое значение имеют характеристики проводки – ее материал и площадь сечения провода. В квартирах используют медную проводку, но бывают случаи применения алюминиевых проводов. В «Правилах устройства электроустановок» (ПУЭ) приведены таблицы, по которым можно определить значение допустимого длительного тока.

Если применяется двужильный медный провод площадью 2,5 кв мм, проложенный в штробе или трубе, то для него допустимый длительный ток составляет 25 А. К сожалению, недобросовестные производители нарушают стандарты, уменьшая сечение, и добавляя в медь примеси. Если вы не уверены в качестве провода, то применяйте меньший показатель, а именно, 16 А. На такой ток должен быть рассчитан и автоматический выключатель.

Но в этом случае мощность всех приборов, установленных в доме должна понизиться, иначе проводка не выдержит нагрузки. Вот почему важно выбирать качественные материалы при прокладке электрических коммуникаций. Они обеспечивают безопасную работу и дают больше возможностей в применении бытовых приборов.

Читать еще:  Акустический выключатель своими руками простейшая схема

Покупая автоматические выключатели, поинтересуйтесь производителем, наличием документов на товар. Защитить себя от подделки можно, если обращаться в специализированные магазины, торгующие электротехническими устройствами. Хотя цена у них будет выше, чем на рынке, но гарантия безопасности в этом случае важнее.

Классификация магнитных пускателей

Принцип работы МП

Магнитные реле, пускатели, контакторы работают по одному принципу. При подаче на катушку МП соответствующего напряжения (переменного или постоянного) электроток аналогичного рода, проходя по ней, образует магнитное поле, силовые линии которого замыкаются по магнитопроводу верхней части МП, т. е. якорю. Как известно, магнитные силовые линии всегда испытывают стремление сократиться по длине, вследствие чего подвижная часть магнитопровода МП притягивается к нижней ее части, преодолевая сопротивление возвратной пружины. При этом жестко связанные с подвижным магнитопроводом контактные перемычки опускаются вниз и замыкают входные и выходные главные контакты в нижней части МП. Поэтому электрическая схема магнитного пускателя весьма проста.

Одновременно с изменением состояния главных контактов изменяется и состояние всех вспомогательных контактов в корпусе МП или в блоке контактов. При прерывании тока в катушке верхняя часть МП под действием усилия пружины возвращается в верхнее положение, и главные, а также дополнительные контакты размыкаются.

Виды магнитных пускателей

Основным предназначением магнитных пускателей является дистанционное управление трехфазными асинхронными электродвигателями с короткозамкнутым ротором. Они работают при переменном токе, напряжением 380 и 660 вольт, с частотой 50 Гц. В число основных операций входят пуск, остановка и реверсирование.

Дополнительно, магнитные пускатели в совокупности с тепловыми реле, защищают управляемые электродвигатели от возможных перегрузок с недопустимой продолжительностью. В некоторых конструкциях пускателей имеются ограничители перенапряжений, используемые в полупроводниковых системах управления.

В соответствии со схемой включения нагрузки могут быть реверсивными и нереверсивными. Классификация по размещению предполагает магнитные пускатели следующих типов:

  • Открытого исполнения. Устанавливаются в закрытых шкафах, на панелях, и прочих местах, куда не может попасть пыль, влага и посторонние предметы.
  • Защищенного исполнения. Монтируются внутри помещений с низким содержанием пыли в окружающей среде. Исключается попадание воды на оболочку устройства.
  • Пылебрызгонепроницаемого исполнения. Устанавливаются внутри помещений и снаружи под навесами, защищающими от дождя и солнечных лучей.

Дополнительная классификация пускателей осуществляется по следующим признакам:

  • Кнопочный пост на корпусе прибора. Нереверсивные пускатели оборудованы кнопками ПУСК и СТОП, а реверсивные устройства имеют кнопки ПУСК ВПЕРЕД, ПУСК НАЗАД и СТОП. На некоторых моделях в корпусе монтируется сигнальная лампа ВКЛЮЧЕНО.
  • Дополнительные блокировочные и сигнальные контакты. Используются в разных комбинациях, в качестве замыкающих или размыкающих. Они могут быть встроенными или оборудоваться как отдельная приставка. Некоторые дополнительные контакты могут использоваться в качестве составной части общей схемы пускателя. Например, в реверсивных устройствах с их помощью осуществляется электрическая блокировка.
  • Ток и напряжение втягивающей катушки.
  • Наличие в схеме теплового реле. Его основной характеристикой является номинальный ток несрабатывания на средних установках. Регулировка тока несрабатывания выполняется в допустимых пределах + 15% от номинала.

Отдельные виды магнитных пускателей могут быть укомплектованы ограничителями перенапряжения и другими видами установочных изделий

Реверсивная схема коммутации магнитных пускателей

Схема подключения реверсивного магнитного пускателя применяется тогда, когда требуется обеспечение вращение электродвигателя в обоих направлениях. К примеру, реверсивный пускатель устанавливается на лифт, грузоподъемный кран, сверлильный станок и прочие приборы требующие прямой и обратный ход.

Реверсивный пускатель состоит из двух обыкновенных пускателей собранных по специальной схеме. Выглядит он так:

Схема подключения реверсивного магнитного пускателя отличается от других схем тем, что имеет два совершенно одинаковых пускателя, которые работают попеременно. При подключении первого пускателя двигатель вращается в одну сторону, при подключении второго пускателя, двигатель вращается в противоположную сторону. Если вы внимательно посмотрите на схему, то заметите, что при переменном подключении пускателей, две фазы меняются местами. Это и заставляет трехфазный двигатель вращаться в разные стороны.

К имеющемуся в предыдущих схемах пускателю добавлены второй пускатель «КМ2» и дополнительные цепи управления вторым пускателем. Цепи управления состоят из кнопки «SB3», магнитного пускателя «КМ2», а также изменённой силовой частью подачи питания к электродвигателю. Кнопки при подключении реверсивного магнитного пускателя имеют названия «Вправо» «Влево», но могут иметь и другие названия, такие, как «Вверх», «Вниз». Чтобы защитить силовые цепи от короткого замыкания, до катушек добавлены два нормально замкнутых контакта «КМ1.2» и «КМ2.2», что взяты от дополнительных контактов на магнитных пускателях КМ1 и КМ2. Они не дают возможности включиться обоим пускателям одновременно. На выше приведенной схеме цепи управления и силовые цепи одного пускателя имеют один цвет, а другого пускателя — другой цвет, что облегчает понимание, как работает схема. Когда включается автоматический выключатель «QF1», фазы «A», «B», «C» идут к верхним силовым контактам пускателей «КМ1» и «КМ2», после чего ожидают там включения. Фаза «А» питает управляющие цепи от защитного автомата, проходит через «SF1» — контакты тепловой защиты и кнопку «Стоп» «SB1», переходит на контакты кнопок «SB2» и «SB3» и остается в ожидании нажатия на одну из этих кнопок. После нажатия пусковой кнопки ток движется через вспомогательный пусковой контакт «КМ1.2» или «КМ2.2» на катушку пускателей «КМ1» или «КМ2». После этого один из реверсивных пускателей сработает. Двигатель начинает вращаться. Что бы запустить двигатель в обратную сторону, надо нажать кнопку стоп (пускатель разомкнет силовые контакты), двигатель обесточится, дождаться остановки двигателя и после этого нажать другую пусковую кнопку. На схеме показано, что подключен пускатель «КМ2». При этом его дополнительные контакты «КМ2.2» разомкнули цепь питания катушки «КМ1», что не даст случайного подключения пускателя «КМ1».

Мини-контакторы

Предназначены для дистанционного управления потребителями небольшой мощности. Исполнение: стационарное (монтаж на DIN-рейку или монтажную плату).

Таблица 14.1. Техническая характеристика мини-контакторов

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector