Ivalt.ru

И-Вольт
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Трехфазная розетка для дома

Трёхфазные розетки

Трёхфазные розетки – это приёмная часть штепсельного разъёма, предназначены для трёхфазных промышленных сетей. В быту практически не применяются. Периодически жилье класса Элит и пр. оборудуется тремя фазами. Как правило, такие розетки показывают защиту от неправильного подключения.

Исторический экскурс

Конструкция с позиций истории

Независимые источники сообщают, что конструкция трёхфазных розеток мало изменилась с конца XIX века. В 1904 году на Мировой ярмарке в Сент-Луисе очевидной стала потребность в унификации всевозможных конструкций. Электрический ток считался сравнительно новым явлением, обилие частот, вольтажей, технических решений потрясало воображение. Несовместимость систем блокировала доступность иностранных рынков для местных производителей. Выставка в Павильоне Электричества продемонстрировала обилие классов напряжений и наличие множества фаз:

  1. Эдисон продвигал постоянный ток по одному, двум и более проводам.
  2. Никола Тесла ввёл в обиход две фазы 110 В частотой 60 Гц.
  3. Доливо-Добровольский изобрёл трёхфазные системы, господствующие поныне.

26 июня 1906 года образовалась IEC – Международная электротехническая комиссия. Все началось с Парижского Международного Электрического конгресса 1900 года, где принимали участие многие страны. Меж прочих – США и Великобритания. IEC занималась стандартизацией, включая единицы измерения. Указанная организация стояла у истоков и занималась внедрением СИ. Она закрепила на законодательном уровне единицы для измерения:

  • Гаусс.
  • Герц.
  • Вебер.

Основы СИ заложил Джиованни Гиорги, в 1901 году доложивший научному сообществу о необходимости расширения МКС (метр-килограмм-секунда) четвертой величиной, служившей базисом для расширения системы на явления электромагнетизма. Военная обстановка первой половины XX века сильно затянула решение, лишь в 1946 году официально введён в качестве недостающей единицы ампер. СИ принята в 1960 году.

Войны затянули и разработку стандартов по штепсельным разъёмам. К примеру, бытовые варианты устройств обнародованы лишь ближе к 20-му году. В начале 30-х члены IEC взяли на вооружение опыт голландской организации IFK. Они увидели, что стандартизация штепсельных разъёмов приносит дополнительные выгоды в международном сотрудничестве. Назначили широкомасштабные испытания, с участием электриков из 12 стран.

Встреча в Париже (январь 1933 года) привела к итогам, что члены IEC решили наладить деловые связи с IFK для обмена опытом. Уже в новом году совместными усилиями оказался создан Технический Комитет (TC 23). В задачи организации вошла стандартизация разъёмов и электрических соединений различного назначения. Несложно догадаться, что приход Гитлера к власти обеспокоил Европу, стало не до розеток.

В итоге встреча состоялась. Июньская жара 1938 года пришла в Торки (Великобритания) вместе с делегатами IEC. Затем аналогичные мероприятия прошли в Париже годом позднее. До завоевания Франции оставались считаные месяцы. Окончательно решилось, что члены TC 23 немедленно займутся розетками и вилками. Гитлер оставался при собственном мнении. 22 июня 1940 года Франция капитулировала, режиму Виши уже не были нужны розетки и вилки.

Первые послевоенные годы ушли на восстановление странами повреждённой экономики. И тогда TC 23 занялся бытовыми розетками и вилками. Не нужно путать подразделение с аналогичным, существующим в рамках организации ISO. Там занимаются тракторами для сельского хозяйства и лесоповалов. Рассматриваемый TC 23 нацелен на разработку электрических интерфейсов и кабелей (см. скрин). К примеру, промышленными разъёмами занимается отдел TC 23H, а бытовыми – TC 23B.

Послевоенные годы

В октябре 1947 года представители IEC облюбовали для сбора город Люцерн в Швейцарии. У руля стали ребята из CEE (1946 год), а TC 23 оставался на подхвате (в 1985 году произошло слияние организаций). С прискорбием сообщаем, что точных дат выяснить не удалось. Ясно лишь, что современная версия стандарта IEC 60309 ведёт родословную от 1979 года. Прежде существовали иные документы, предположительно CEE 17 и IEC 309, о которых не удаётся найти иных сведений, помимо факта существования. В 1968 году опубликован британский стандарт BS4343, опиравшийся на упомянутые.

Известно, что первоначально меньше всего члены комиссий думали о безопасности. На первом плане стояла электрическая совместимость оборудования. Преимущество британского стандарта BS4343 обеспечивалось учётом отдельных мер безопасности. Очевидные достоинства документа, продемонстрированные CENELEC, и привели к пересмотру IEC документов, принятых ранее. Так на свет появились две части современного стандарта на промышленные штепсельные разъёмы:

  1. IEC 60309-1.
  2. IEC 60390-2.

Оба перекочевали и в британское законодательство в виде BS EN60309-21BS4343, но гораздо позднее, в 1992 году. Сегодня английская техника совместима с продукцией Европы. Публикация CEE 17 нормирует промышленные разновидности штепсельных соединений с напряжением до 750 В и током до 200 А.

На территории Северной Америки и сегодня встречается немыслимое количество разновидностей трёхфазных розеток, приходится даже выпускать специальные руководства для их распознавания. В рамках стандартов NEMA существует 150 подтипов разъёмных соединителей переменного тока.

Стандарт IEC 60309

Сегодня стандарт на трёхфазные розетки для промышленности включает требования к устройствам с питанием ниже 750 В, током до 200 А и частотой до 500 Гц. С рабочей температурой от минус 25 до 40 градусов Цельсия. Как правило, корпус выполняется со степенью защиты IP44 или влагостойким по IP67. Коннекторы имеют цветовой код, позволяющий судить о назначении:

  1. Жёлтый – для частот 50 и 60 Гц напряжения 100-130 В.
  2. Фиолетовый – аналогично, напряжение 20-25 В.
  3. Белый – аналогично, напряжение 40-50 В.
  4. Синий – для прежних частот, на напряжение 200 – 250 В.
  5. Оранжевый – 125 либо 250 В.
  6. Красный – для тех же частот, на напряжение 380 – 480 В.
  7. Чёрный – прежние показатели частот, на напряжение 500 – 690 В.
  8. Серый – 277 В, 2 полюса.
  9. Зелёный – повышенной частоты, свыше 50 В.

Уже по цвету часто судят о назначении и избегают характерных ошибок. Дополнительная информация проистекает из положения (по часовой стрелке) заземляющего контакта. Градус отсчитывается от стороны, противолежащей полукруглому выступу по внешнему периметру вилки. Заземляющий контакт самый толстый, по этому признаку и находится. Линий, как правило, 4 либо 5. Исследователи приводят данные, исходя из истории развития трёхфазных розеток:

  1. Трёхфазные с изолированной нейтралью на три пина. Сегодня не применяются, морально устарели.
  2. Трёхфазные с изолированной нейтралью и контактом заземления на 4 пина. Встречаются в промышленности, нормируются стандартом IEC 60309.
  3. Трёхфазные с глухозаземлённой нейтралью без защитного заземления на 4 пина. Морально устарели, не применяются.
  4. Трёхфазные с глухозаземлённой нейтралью и заземлением на 5 пинов. Описываются преимущественно стандартом IEC 60309, массово применяются.

Розетки IEC 60309

Розетки IEC 60309 выпускаются на стандартные номиналы токов – 16, 32, 63 и 125 А. Для обеспечения защиты от неправильного подключения используются не только ключевые положения более толстого заземляющего вывода, но варьируются размеры розеток и вилок (диаметры разъёма, пинов и пр.). Невозможно физически подключить оборудование к другой частоте либо на иной вольтаж. На скрине представлены разновидности трёхфазных розеток IEC и одной двухфазной, которую трудно перепутать. Так обеспечивается защита сетей и оборудования.

Похожие вилки с разными фазами

У трёхфазных розеток, показанных на скрине, заземляющий контакт находится в районе 6 часов, в самом низу. Для верности помечен черным, а визуально – толще прочих. Два типа разъёмов описаны выше, а двухфазный применяется для подключения электрической плиты соответствующего типа. Среди бытовой техники подобное оборудование встречается редко. IEC 60309 описывает розетки на две фазы из четырёх контактов, где нейтраль более короткая и тонкая, смещена на другой угол. Допустимо перепутать по внешнему виду, подключить неправильно все равно не выйдет, плюс цвет разный.

Читать еще:  Розетка 3 контакта для электроплит

Наглядные примеры вилок

Расположение ключей на розетках IEC 60309

Сводный список позволит быстро определить назначение той или иной двухфазной или трёхфазной розетки (часы отсчитываются по фронтальному виду):

  1. Жёлтый. Заземляющий пин на 4 ч. Напряжение 100 – 130 В.
  2. Оранжевый. Заземляющий пин на 12 ч (вверху). Напряжение 120 – 240 В.
  3. Голубой. Заземляющий пин на 6 ч (внизу). Напряжение 200 – 250 В.
  4. Голубой. Заземляющий пин на 9 ч. Напряжение 120 – 250 В.
  5. Фиолетовый – постоянный ток.
  6. Белый – постоянный ток.
  7. Серый. Заземляющий пин на 5 часов. Напряжение 227 В, частота 60 Гц.
  8. Красный. Заземляющий пин на 3 ч. Напряжение 380 В, 50 Гц.
  9. Красный. Заземляющий пин на 6 ч. Напряжение 380 – 480 В.
  10. Красный. Заземляющий пин на 11 ч. Напряжение 380 – 480 В, 60 Гц.
  11. Красный. Заземляющий пин на 9 ч. Напряжение 380 – 415 В.
  12. Красный. Заземляющий пин на 3 ч. Напряжение 440 В, 60 Гц.
  13. Чёрный. Заземляющий пин на 7 ч. Напряжение 480 – 500 В.
  14. Чёрный. Заземляющий пин на 5 часов. Напряжение 500 – 690 В.
  15. Зелёный. Заземляющий пин на 10 ч. Частота 100 – 300 Гц.
  16. Зелёный. Заземляющий пин на 2 ч. Частота 300 – 500 Гц.
  17. Серый. Заземляющий пин на 12 ч. Для питания через разделительный трансформатор.
  18. Серый. Заземляющий пин на 1 ч. Как правило, используется для случаев, которые не попадают в указанные ранее.

Согласно этому списку голубой разъем на 2 фазы, представленный на рисунке, предназначен для работы в цепях 200 – 250 В (стандартное сетевое напряжение). Помимо описанных существуют трёхфазные розетки на 6 пинов для коммутации при старте по схеме звезды (что уменьшает пусковой ток). Иногда в разъем вводится центральный пилотный контакт, короче прочих. Он первым выходит из розетки при выключении и последним заходит при включении. Пилотный контакт позволяет контролировать источник питания, избавляя от возникновения электрической дуги в цепях 63 и 125 А. Заблаговременно выключая и с небольшим запозданием включая подачу энергии, такой штепсельный разъем обеспечивают наилучшую безопасность.

На скрине представлена сводная информация обо всех существующих ныне трёхфазных розетках. Ненужные варианты из стандарта отсутствуют либо зачёркнуты. Системы с глухозаземлённой нейтралью помечаются маркировкой «фазное/линейное напряжение». Значения их отличаются в корень из трёх раз. В прочих случаях через дробь указаны линейные напряжения для систем с изолированной нейтралью. Тогда значения цифр отличаются на другой коэффициент. Этот признак поможет читателям понять, где и какая система используется.

Не нужно забывать, что на розетках изображение контактов зеркально отражено. Если приглядеться, видно, что путаница возможна только для зелёных разъёмов высокочастотного напряжения. В обоих случаях используется 4 провода, а заземляющие контакты зеркально отражены. Однако если с распознаванием возможна ошибка, неправильное подключение все-таки исключено, чего добивались разработчики стандарта.

Изображение пилотного контакта

Помимо розеток IEC известны и прочие, но они постепенно вытесняются. Следовательно, роли существенной уже не играют.

Чем трехфазное напряжение отличается от однофазного

Три фазы = линейное напряжение 380 Вольт, Одна фаза = фазное напряжение 220 Вольт

Статья адресована начинающим электрикам. Я тоже когда-то был начинающим, и всегда рад поделиться знаниями и поднять профессиональный уровень моих читателей.

Итак, почему в некоторые электрощитки приходит напряжение 380 Вольт, а в некоторые – 220? Почему у одних потребителей напряжение трёхфазное, а у других – однофазное? Было время, я задавался этими вопросами и искал на них ответы. Сейчас расскажу популярно, без формул и диаграмм, которыми изобилуют учебники.

Очень коротко, для тех, кто не будет читать дальше: напряжение 380 В называется линейным и действует в трехфазной сети между любыми из трёх фаз. Напряжение 220 В называется фазным и действует между любой из трёх фаз и нейтралью (нулём).

Другими словами. Если к потребителю подходит одна фаза, то потребитель называется однофазным, и напряжение его питания будет 220 В (фазное). Если говорят о трехфазном напряжении, то всегда идёт речь о напряжении 380 В (линейное). Какая разница? Далее – подробнее.

Чем три фазы отличаются от одной?

В обоих видах питания присутствует рабочий нулевой проводник (НОЛЬ). Про защитное заземление я подробно рассказал здесь, это обширная тема. По отношению к нулю на всех трёх фазах – напряжение 220 Вольт. А вот по отношению этих трёх фаз друг к другу – на них 380 Вольт.

Напряжения в трёхфазной системе

Так получается, потому что напряжения (при активной нагрузке , и ток) на трёх фазных проводах отличаются на треть цикла, т.е. на 120°.

Подробнее можно ознакомиться в учебнике электротехники – про напряжение и ток в трехфазной сети, а также увидеть векторные диаграммы.

Получается, что если у нас есть трехфазное напряжение, то у нас есть три фазных напряжения по 220 В. И однофазных потребителей (а таких – почти 100% в наших жилищах) можно подключать к любой фазе и нулю. Только делать это надо так, чтобы потребление по каждой фазе было примерно одинаковым, иначе возможен перекос фаз.

Подробнее о перекосе фаз, и от чего он бывает – здесь.

А защититься от перекоса фаз лучше всего с помощью реле напряжения, например Барьер или ФиФ ЕвроАвтоматика.

Кроме того, чрезмерно нагруженной фазе будет тяжело и обидно, что другие “отдыхают”)

Преимущества и недостатки

Обе системы питания имеют свои плюсы и минусы, которые меняются местами или становятся несущественными при переходе мощности через порог 10 кВт. Попробую перечислить.

Однофазная сеть 220 В, плюсы

  • Простота
  • Дешевизна
  • Ниже опасное напряжение

Однофазная сеть 220 В, минусы

  • Ограниченная мощность потребителя

Трехфазная сеть 380 В, плюсы

  • Мощность ограничена только сечением проводов
  • Экономия при трехфазном потреблении
  • Питание промышленного оборудования
  • Возможность переключения однофазной нагрузки на “хорошую” фазу при ухудшении качества или пропадании питания

Трехфазная сеть 380 В, минусы

  • Дороже оборудование
  • Более опасное напряжение
  • Ограничивается максимальная мощность однофазных нагрузок

Когда 380, а когда 220?

Так почему же в квартирах у нас напряжение 220 В, а не 380? Дело в том, что к потребителям мощностью менее 10 кВт, как правило, подключают одну фазу. А это значит, что в дом вводится одна фаза и нейтральный (нулевой) проводник. В 99% квартир и домов именно так и происходит.

Однофазный электрощиток в доме. Правый автомат – вводной, далее – по комнатам. Кто найдёт ошибки на фото? Хотя, этот щиток – одна сплошная ошибка…

Однако, если планируется потреблять мощность более 10 кВт, то лучше – трехфазный ввод. А если имеется оборудование с трехфазным питанием (содержащее трехфазные двигатели), то я категорически рекомендую заводить в дом трехфазный ввод с линейным напряжением 380 В. Это позволит сэкономить на сечении проводов, на безопасности, и на электроэнергии.

Читать еще:  Розетка не работает опель мокка

Трехфазный ввод. Вводной автомат на 100 А, далее – на счетчик трехфазный прямого включения Меркурий 230.

Не смотря на то, что есть способы включения трехфазной нагрузки в однофазную сеть, такие переделки резко снижают КПД двигателей, и иногда при прочих равных условиях можно за 220 В заплатить в 2 раза больше, чем за 380.

Однофазное напряжение применяется в частном секторе, где потребляемая мощность, как правило, не превышает 10 кВт. При этом на вводе применяют кабель с проводами сечением 4-6 мм². Потребляемый ток ограничивается вводным автоматическим выключателем, номинальный ток защиты которого – не более 40 А.

Про выбор защитного автомата я уже писал здесь. А про выбор сечения провода – здесь. Там же – жаркие обсуждения вопросов.

Но если мощность потребителя – 15 кВт и выше, то тут обязательно нужно использовать трехфазное питание. Даже, если в данном здании нет трехфазных потребителей, например, электродвигателей. В таком случае мощность разделяется по фазам, и на электрооборудование (вводной кабель, коммутация) ложится не такая нагрузка, как если бы ту же мощность брали от одной фазы.

Пример трехфазного электрощитка. Потребители и трехфазные, и однофазные.

Например, если дом питается от одной фазы, и потребляет мощность 15 кВт – это ток около 70А, нужен медный провод сечением не менее 10 мм². Стоить кабель с такими жилами будет существенно. А автоматов на одну фазу (однополюсных) на ток больше 63 А на ДИН-рейку я не встречал.

Поэтому в офисах, магазинах, и тем более на предприятиях применяют только трёхфазное питание. И, соответственно, трёхфазные счетчики, которые бывают прямого включения и трансформаторного включения (с трансформаторами тока).

И на вводе (перед счетчиком) стоят примерно такие “ящички”:

Трехфазный ввод. Вводной автомат перед счетчиком.

Существенный минус трехфазного ввода (отмечал его выше) – ограничение по мощности однофазных нагрузок. Например, выделенная мощность трехфазного напряжения – 15 кВт. Это значит, что по каждой фазе – максимум 5 кВт. А это значит, что максимальный ток по каждой фазе – не более 22 А (практически – 25). И надо крутиться, распределяя нагрузку.

Надеюсь, теперь понятно, что такое трехфазное напряжение 380 В и однофазное напряжение 220 В?

Схемы Звезда и Треугольник в трехфазной сети

Существуют различные вариации включения нагрузки с рабочим напряжением 220 и 380 Вольт в трехфазную сеть. Эти схемы называются “Звезда” и “Треугольник”.

Когда нагрузка рассчитана на напряжение 220В, то она включается в трехфазную сеть по схеме “Звезда”, то есть к фазному напряжению. При этом все группы нагрузки распределяются так, чтобы мощности по фазам были примерно одинаковы. Нули всех групп соединены вместе и подключены к нейтральному проводу трехфазного ввода.

В “Звезду” подключены все наши квартиры и дома с однофазным вводом, другой пример – подключение ТЭНов в мощных калориферах и конвектоматах.

Когда нагрузка на напряжение 380В, то она включается по схеме “Треугольник”, то есть к линейному напряжению. Такое распределение по фазам наиболее типично для электродвигателей и другой нагрузки, где все три части нагрузки принадлежат к единому устройству.

Система распределения электроэнергии

Исходно напряжение всегда является трехфазным. Под “исходно” я подразумеваю генератор на электростанции (тепловой, газовой, атомной), с которого напряжение в много тысяч вольт поступает на понижающие трансформаторы, которые образуют несколько ступеней напряжения. Последний трансформатор понижает напряжение до уровня 0,4 кВ и подаёт его конечным потребителям – нам с вами, в квартирные дома и в частный жилой сектор.

На крупных предприятиях с потреблением мощности более 100 кВт обычно существуют собственные подстанции 10/0,4 кВ.

Трехфазное питание – ступени от генератора до потребителя

На рисунке упрощенно показано, как с генератора G напряжение (везде речь идёт про трехфазное) 110 кВ (может быть 220 кВ, 330 кВ или другое) поступает на первую трансформаторную подстанцию ТП1, которая понижает напряжение в первый раз до 10 кВ. Одна такая ТП устанавливается для питания города или района и может иметь мощность порядка от единиц до сотен мегаватт (МВт).

Далее напряжение поступает на трансформатор ТП2 второй ступени, на выходе которого действует напряжение конечного потребителя 0,4 кВ (380В). Мощность трансформаторов ТП2 – от сотен до тысяч кВт. С ТП2 напряжение поступает к нам – на несколько многоквартирных домов, на частный сектор, и т.п.

Такие ступени преобразования уровня напряжения необходимы для того, чтобы уменьшить потери при транспортировке электроэнергии. Подробнее о потерях в кабельных линиях – в другой моей статье.

Схема упрощённая, ступеней может быть несколько, напряжения и мощности могут быть другие, но суть от этого не меняется. Только конечное напряжение потребителей одно – 380 В.

Напоследок – ещё несколько фото с комментариями.

Электрощит с трехфазным вводом, но все потребители – однофазные.

Трехфазный ввод. Переход на меньшее сечение проводов, чтобы подключить их к счетчику.

Трехфазная розетка для дома

С этим покупают Посмотреть

Розетка кабельная 32А 3Р+N+E IР67 переносная 400В AM-TOP

  • Код товара 9825227
  • Артикул 562
  • Производитель MENNEKES/AM-TOP

С этим покупают Посмотреть

Розетка кабельная 16А 3Р+N+E IР67 на поверхность 400В

  • Код товара 128111
  • Артикул 9342
  • Производитель MENNEKES

С этим покупают Посмотреть

Розетка кабельная 32А 3Р+N+E IР67 на поверхность 400В

  • Код товара 2409435
  • Артикул 9382
  • Производитель MENNEKES

С этим покупают Посмотреть

Розетка кабельная 16А 3Р+N+E IР67 переносная 400В AM-TOP

  • Код товара 9825226
  • Артикул 550
  • Производитель MENNEKES/AM-TOP

Розетка стационарная ССИ-145 MAGNUM 125А 3Р+РЕ+N 380В IP67

  • Код товара 5735211
  • Артикул PSN12-125-5
  • Производитель IEK/MAGNUM

Сделано
в России

Розетка 235 переносная с заземлением 3Р+РЕ+N 63А 380В IP54

  • Код товара 9806502
  • Артикул PSR22-063-5
  • Производитель IEK/ССИ

Розетка стационарная ССИ-114 MAGNUM 16А 3Р+РЕ 380В IP44

  • Код товара 6905759
  • Артикул PSN12-016-4
  • Производитель IEK/MAGNUM

Сделано
в России

Розетка переносная ССИ-214 MAGNUM 16А 3Р+РЕ 380В IP44

  • Код товара 7196115
  • Артикул PSN22-016-4
  • Производитель IEK/MAGNUM

Сделано
в России

Розетка кабельная 16А 3Р+N+Е IР44 на поверхность 380В 115

  • Код товара 9693479
  • Артикул PSR12-016-5
  • Производитель IEK/ССИ

Розетка кабельная 32А 3Р+N+Е IР44 на поверхность 380В 125

  • Код товара 9693482
  • Артикул PSR12-032-5
  • Производитель IEK/ССИ

Розетка кабельная 63А 3Р+N+Е IР54 на поверхность 380В 135

  • Код товара 9693484
  • Артикул PSR12-063-5
  • Производитель IEK/ССИ

Розетка кабельная 32А 3Р+N+Е IР44 переносная 380В 225

  • Код товара 9693476
  • Артикул PSR22-032-5
  • Производитель IEK/ССИ

Розетка переносная ССИ-215 MAGNUM 16А 3Р+РЕ+N 380В IP44

  • Код товара 4578943
  • Артикул PSN22-016-5
  • Производитель IEK/MAGNUM

Сделано
в России

Розетка кабельная 32А 3Р+PE IР44 на поверхность 380 В 124

  • Код товара 9693481
  • Артикул PSR12-032-4
  • Производитель IEK/ССИ

Розетка кабельная 16А 3Р+N+Е IР44 переносная 380В 215

  • Код товара 9693473
  • Артикул PSR22-016-5
  • Производитель IEK/ССИ

Розетка кабельная 32А 3Р+E IР44 переносная 380В 224

  • Код товара 9693475
  • Артикул PSR22-032-4
  • Производитель IEK/ССИ

Розетка кабельная 16А 3Р+E IР44 на поверхность 380В 114

  • Код товара 9693478
  • Артикул PSR12-016-4
  • Производитель IEK/ССИ
Читать еще:  Сварочный аппарат розетка 220в

Розетка кабельная 16А 3Р+E IР44 переносная 380В 214

  • Код товара 9693472
  • Артикул PSR22-016-4
  • Производитель IEK/ССИ

С этим покупают Посмотреть

Розетка панельная 16А 3Р+N+E IР44 400В

  • Код товара 9825250
  • Артикул 1385
  • Производитель MENNEKES

С этим покупают Посмотреть

Розетка кабельная 16А 3Р+N+E IР44 переносная 400В AM-TOP

  • Код товара 9825221
  • Артикул 5
  • Производитель MENNEKES/AM-TOP

  • Покупателям
    • Способ оплаты
    • Доставка
    • Акции
    • Скидки и баллы
    • Адреса магазинов
    • Договор оферты
  • Компания ЭТМ
    • О компании
    • Сервис iPRO
    • Электрофорум
    • ЭТМ Вакансии

Центр поддержки и продаж

  • Электрика
  • Свет
  • Крепеж
  • Безопасность

Мы в социальных сетях

  • Повышение квалификации
  • Часто задаваемые вопросы
  • Нашли ошибку?
  • Центр обращений

© 2021 Компания ЭТМ — Копирование и использование в коммерческих целях информации на сайте www.etm.ru допускается только с письменного одобрения Компании ЭТМ. Информация о товарах, их характеристиках и комплектации может содержать неточности

Ваш город: Выберите город

Я подтверждаю свое согласие на обработку персональных данных согласно Политике обработки персональных данных

Сайт использует файлы cookie с целью повышения удобства пользования сервисом. Продолжая использовать наш сайт, вы даёте согласие на обработку cookie-файлов.

5 вариантов трехфазной схемы распределительного щита.

Все распределительные щиты должны выполнять 3 основные задачи:

    защита кабеля от перегрузок и КЗ

С этой целью в щитах монтируются автоматические выключатели. Они в первую очередь предназначены именно для защиты кабеля, а не подключенного к ним оборудования, как многие до сих пор думают.

    защита человека от поражения электрическим током

Обеспечивается она путем установки УЗО или дифф.автоматов.

    защита техники от перепадов напряжения

К сожалению, в наших сетях зачастую происходят скачки напряжения. Автоматы на это не реагируют, так как просто не рассчитаны на такую защиту.

УЗО также не приспособлено на срабатывание от перенапряжения. Для этого понадобятся модульные реле напряжения или УЗМ – устройства защиты многофункциональные.

На них выставляются определенные верхние и нижние пределы по напряжению. Как только произошел скачок, или наоборот резкое снижение параметров эл.сети, данное реле (УЗМ) срабатывает и отключает питание.

Чем же отличается сборка 3-х фазного щита, с условием обеспечения вышеперечисленных задач, от сборки однофазного? Понятно, что однофазный на порядок проще трехфазного.

Там есть только единственная фаза, ноль и защитное заземление. В 3-х фазном, к вам в щит приходит те же ноль, защитное заземление и уже 3 фазы.

С одной стороны это дает вам возможность подключать гораздо большую нагрузку, и получить у энергопередающей организации большую мощность для подключения. Но с другой стороны, это всегда несет и большие затраты, плюс необходимость грамотного распределения этой самой нагрузки.

Причем не по своей вине или вине энергоснабжающей организации, а именно из-за вас.

Есть множество вариантов сборки и комплектации трехфазных щитков. Не будем рассматривать самые простейшие с минимальным количеством вводного оборудования.

Выберем более сложные по комплектации, но в тоже время достаточно универсальные. В связи с резким увеличением количества эл.приборов в наших квартирах и домах, они в последнее время приобретают все большую популярность.

Преимущества:

    каждая линия защищена как от КЗ, перегрузок, так и от утечек. И все это одни аппаратом.
    проще установить проблемную зону при повреждениях
    отсутствуют нулевые шины
    у вас полная свобода в группировке аппаратов в щите
    легко распределять нагрузку по фазам
    большие габариты щита и большое количество модульных устройств (от 72шт и более)
    очень дорого

Дифференциальный автомат это оборудование, которое ставится на отдельную линию, как обычный автомат, но еще включает в себя и защиту от утечек (дифф.защиту).

Это хоть и самый лучший вариант, но и самый дорогой. Поэтому используется крайне редко.

Условно говоря, сколько у вас будет отходящих групповых линий, столько же понадобится дифф.автоматов.

При этом, чтобы при возможных авариях понять, от чего отключился такой автомат, от утечки или КЗ, рекомендуется использовать модели с индикацией причины срабатывания.

В начале схемы монтируется вводное устройство – рубильник. С него пускаете питание на реле напряжения.

Далее, через кросс-модули разделяете нагрузку на диффы. На каждый автомат пускаете по одной фазе.

Если в последствии окажется, что та или иная линия перегружает какую-либо из фаз, вам достаточно на одном из кросс модулей просто поменять их местами, перекинув провода с одной шинки на другую.

Если вы не ограничены бюджетом, то это самый лучший вариант сборки и комплектации трехфазного щитка.

Преимущества сборки:

    экономно
    требуется щиток небольших размеров (от 54 до 72 модулей)
    не наглядная группировка линий
    невозможность простого внесения изменений в перераспределении нагрузки по фазам
    наличие нулевых шинок

Это один из простых и наиболее распространенных вариантов сборки и проектировании трехфазных щитков. Объясняется это конечно его дешевизной по отношению к остальным.

Однако это все предварительное деление. Так как реального потребления никто не знает. И только со временем, путем замеров можно увидеть фактическую картину. А она может существенным образом отличаться от ранее спроектированной.

И чтобы хоть как-то подравнять нагрузки, приходится переделывать чуть ли не половину всего щитка. Оставите как есть, и обязательно в будущем столкнетесь с проблемами:

    перекос напряжения
    нагрев нулевой шинки с возможным отгоранием ноля
    перегруженные автоматы и последствия этого

Есть еще более упрощенный вариант данного способа комплектации.

Преимущества:

    самый дешевый вариант
    щит малого размера (до 32 модулей)

Недостатки:

    практически отсутствует группировка линий
    отсутствует возможность изменения нагрузки по фазам
    присутствуют нулевые шины
    возможно ложное срабатывание УЗО

Здесь используется всего одно УЗО на вводе (кроме не отключаемых потребителей) и уже далее, нагрузка распределяется через однополюсники. Согласно п.7.1.83 ПУЭ вы можете быть ограничены в выборе количества подключаемых линий.

Если же проигнорировать данное правило, то вполне вероятны ложные срабатывания УЗО. При этом вы долго будете ломать голову прикидывая, сработало оно от защиты или же ложно.

Поэтому лучше искать промежуточные варианты комплектации трехфазного щитка.

Преимущества:

    возможность легко распределять нагрузку по фазам
    наглядная группировка линий
    удобное подключение питания и отходящих проводников
    отсутствие нулевых шинок
    габаритные размеры щитка (от 96 до 144 модулей)
    относительно дорого

Когда вы собираете щит по первому варианту на дифф.автоматах, вы пропускаете через него фазный и нулевой проводник. Плюс отпадает необходимость в УЗО.

Если по экономическим причинам вы не можете себе позволить дифференциальные автоматы, группировать отходящие линии все равно придется на УЗО.

Однако для того, чтобы впоследствии все было ремонто-пригодно и легко вносились изменения в схему без ее кардинальных реконструкций и перемонтажа проводов, вместо обычных однофазных модульных автоматов достаточно применить двухполюсные.

Внешне они выглядят как собранные воедино два одинарных модульных однополюсника.

Для сборки схемы соединяете между собой нули в той или иной группе 4-х полюсных УЗО. Через них пропускаете все фазы и далее пускаете их на кросс модули.
После чего фазы распределяются по автоматам.

Преимущества:

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector