Ivalt.ru

И-Вольт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Максимальный ток в диэлектрике

Диэлектрики — изоляционные материалы

Теоретически идеальный кабель представляет собой неизолированный проводник в свободном воздушном пространстве. Однако на практике не все так просто.

Поверхностный эффект

Чтобы понять важность используемого в кабеле изоляционного материала, рассмотрим прохождение переменного тока через проводник. Различные частоты занимают в проводнике различные радиальные позиции. Низкочастотные сигналы занимают центр проводника, высокочастотные сигналы передаются по его поверхностным слоям. Таким образом, высокочастотные сигналы «вынуждены» протекать по области проводника с меньшим поперечным сечением, чем низкочастотные сигналы, а значит, эффективное сопротивление кабеля для них больше, чем для низкочастотных. Поэтому потери в кабелях зависят от частоты сигнала, и наибольшие потери терпят высокочастотные сигналы. Это явление известно как «поверхностный эффект». В кругах аудиофилов ведется ожесточенная дискуссия на эту тему, поскольку многие утверждают, что поверхностный эффект затрагивает только частоты за пределами человеческого слуха. Однако это не совсем верно – сопротивление проводника начинает расти из-за поверхностного эффекта в районе 20 кГц.

Высокие частоты «отвечают» за тембр, пространственность и чистоту.

См. ниже, слева направо.

  • Радиальные позиции частот в проводнике.
  • Область, занимаемая верхними частотами в витом проводнике.
  • Область, занимаемая верхними частотами в цельном проводнике.

Низкие и средние частоты занимают центр проводника. Оптимизация низкочастотных составляющих сигнала особенно важна в акустических кабелях. Обширные тестовые исследования доказывают, что для чистого звучания басов проводник должен иметь поперечное сечение от 3,00 до 4,5 мм2. Кроме того, «большие» кабели должны быть витыми, в них должен использоваться высококачественный диэлектрик, такой как полиэтилен, тефлон или микропористый тефлон. На качество звучания также влияют и другие факторы, не поддающиеся измерению.

Конструкции с применением множественных изолированных жил преодолевают проблемы, связанные с увеличением сопротивления из-за поверхностного эффекта, однако такие низкоиндуктивные кабели имеют более высокую емкость. Кабели с низкой емкостью и низким сопротивлением не будут влиять на устройства, к которым они подключены в той степени, насколько кабели с высокой емкостью; акустические кабели должны иметь низкое сопротивление во избежание потерь сигнала, а межблочные кабели должны обладать низкой емкостью для увеличения скорости распространения сигнала.

Аудиосистемы, которые звучат в акустическом диапазоне ярче других, могут работать на грани нестабильности из-за использования кабелей высокой емкости. Яркость часто ошибочно принимается за улучшенную динамику, но «улучшения» динамического диапазона не должны достигаться за счет низкочастотной информации, поскольку это может вызвать нестабильность усилителя. Нежелательная яркость также свойственна посеребренным кабелям, которые через некоторое время утомляют слушателей. Atlas никогда не использует для аудиоприложений посеребренные кабели или кабели из различных металлов с разным сопротивлением и разными характеристиками.

Три вышеприведенных рисунка иллюстрируют, слева направо, радиальные области, занимаемые сигналом в проводнике в зависимости от частоты. Низкие частоты занимают центр проводника. Отсюда следует, что «толстый» проводник обладает меньшим сопротивлением в низкочастотном диапазоне и обеспечивает больше басов. Вот почему Atlas выпускает кабели разного сечения – например, акустические кабели Hyper выпускаются сечением 1,5, 2,0 и 3,0 мм2. В тех случаях, когда необходимы мощные басы, требуется применение кабеля большого сечения. Кроме того, при большой длине акустических кабелей лучше использовать более «толстые» кабели.

На втором рисунке показана область, занимаемая верхними частотами в витом проводнике.

На третьем рисунке показана область, занимаемая верхними частотами в цельном проводнике. Она больше, чем в витом проводнике, поэтому высокочастотный сигнал в цельном проводнике встречает меньшее сопротивление, в связи с чем в этом случае обеспечивается лучшая передача верхних частот. Во всех акустических кабелях bi-wire, производимых Atlas, используются витые проводники для передачи басов и цельные проводники – для передачи верхних частот. Напрашивается вопрос: почему не использовать цельный проводник и для тех, и других частот? Если взять, к примеру, цельный проводник сечением 3,00 мм2, при изгибе он будет не сгибаться, а ломаться, так что это непрактично. Это еще одна из причин использования витых проводников. Приблизительное оптимальное сечение цельного проводника – 1,5 мм2. Акустические кабели bi-wire, производимые Atlas, на стороне, подключаемой к колонкам, имеют четыре вывода неравной длины. Два более длинных вывода подключаются к верхнечастотным разъемам колонок (конечно, при условии, что они поддерживают режим bi-wire!), а два коротких – к низкочастотным разъемам.

Тип изоляции – скорость имеет значение!

Высокочастотные сигналы занимают периферийные слои проводника (см. выше). Низкокачественные диэлектрики уменьшают скорость распространения этих сигналов, что в результате приводит к звучанию, смещенному в сторону нижних и средних диапазонов акустического спектра. Плохое звучание часто связано с применением кабелей с низкокачественной изоляцией.

Изоляция из поливинилхлорида (PVC) дешева в производстве и наиболее часто используется в аудио и видео кабелях. Поливинилхлорид – низкокачественный диэлектрик, один из худших для аудио и видео сигналов, часто вызывающий большие потери из-за существенного снижения скорости распространения сигнала. Поливинилхлорид гораздо лучше подходит для силовых кабелей, а в аудио и видео кабелях его применения следует избегать.

Другие распространенные диэлектрики – полиэтилен, полипропилен и политетрафторэтилен (ПТФЭ), более известный под названием «тефлон». Недавно компания Atlas создала новый уникальный диэлектрик – микропористый тефлон.

Тефлон имеет высокую температуру плавления (327°C), которая идеально подходит для нанесения тефлонового покрытия на непригарные сковороды, но вызывает трудности при покрытии обработанной меди – при высоких температурах медь OFC и OCC возвращаются к гранулярному состоянию, теряя свою монокристаллическую структуру и превращаясь в технически чистую медь. Последние несколько лет компания Atlas совместно со своими поставщиками исследовала способы нанесения тефлоновых покрытий на обработанную медь, не дающие вышеописанных негативных эффектов. Благодаря этим развернутым исследованиям теперь стало возможным наносить на обработанную медь покрытие из одного из типов тефлона под названием «фторированный этилен-пропилен» (ФЭП), температура плавления которого – 275°. При нанесении покрытия медь одновременно охлаждается.

ФЭП существенно снижает диэлектрические потери в кабелях, сохраняя при этом все преимущества низкозернистых медных проводников. Этот вид тефлона используется во всех продуктах серии Atlas Ascent, в акустических кабелях Hyper и других.

Дальнейшие исследования привели к использованию в качестве диэлектрика микропористого тефлона (ПТФЭ). Первые продукты Atlas, в которых применяется этот изоляционный материал – межблочные и акустические кабели Mavros и Asimi.

Микропористый тефлон – это уникальный материал с низким удельным весом и существенно лучшими характеристиками по сравнению с обычным тефлоном. Микропористый тефлон содержит значительно большее количество воздуха, чем цельный тефлон. Воздух содержится в микроскопических (менее половины микрона диаметром) пузырьках внутри материала. Благодаря этому достигается чрезвычайно низкая диэлектрическая проницаемость – от 1,3 до 1,5 (следующий по качеству диэлектрик, тефлон, имеет диэлектрическую проницаемость от 2,1 до 2,3). Скорость распространения сигнала в кабелях с изоляцией из микропористого тефлона на 70-80% выше, чем в обычных кабелях, и примерно на 30% выше, чем в кабелях с изоляцией из обычного тефлона.

Читать еще:  Горизонтальный блок 3 розетки evoline dock desk

Микропористый тефлон (ПТФЭ) отличается повышенной фазовой стабильностью при температурных колебаниях. Фазовая стабильность кабеля зависит от коэффициента теплового расширения диэлектрика и проводников. Поскольку микропористый тефлон имеет более низкий коэффициент теплового расширения по сравнению с обычным тефлоном, его использование улучшает фазовую стабильность при колебаниях температуры.

При одинаковом внешнем диаметре кабели с изоляцией из микропористого тефлона обеспечивают меньшие потери сигнала, чем кабели с изоляцией из обычного тефлона. Во-первых, это связано с тем, что низкий коэффициент затухания самого диэлектрика уменьшает ослабление сигнала, особенно на высоких частотах. Во-вторых, с тем, что низкая диэлектрическая проницаемость микропористого тефлона позволяет использовать проводники большего диаметра. Так, в кабелях Mavros улучшение передачи низкочастотной информации (то есть звучание басов) достигается путем применения проводников увеличенного диаметра в изоляции из микропористого тефлона.

Термическое расширение цельного тефлона оказывает неблагоприятные механические воздействия на кабель, поскольку с расширением тефлона при нагревании может уменьшиться воздушный зазор между изоляцией кабеля и контактом разъема, что изменяет характеристики импеданса разъема. При применении микропористого тефлона, минимально расширяющегося при нагревании, эти эффекты практически несущественны.

Вышеописанные различия между микропористым и обычным тефлоном могут показаться незначительными, однако кумулятивный эффект этих маленьких различий приводит к ухудшению передачи аудиосигналов и не позволяет полностью раскрыть все нюансы музыкальных записей.

В нижеприведенной таблице приведены свойства ряда диэлектриков. Поливинилхлорид (PVC), хотя и не используется в кабелях Atlas, приведен для сравнения.

В нижеприведенной таблице приведены свойства ряда диэлектриков. Поливинилхлорид (PVC), хотя и не используется в кабелях Atlas, приведен для сравнения

Избранные серии

Zeno. High-End кабель для High-End наушников

Пробой диэлектриков

При напряженности электрического поля, превосходящей предел электрической прочности диэлектрика, наступает пробой. Пробой представляет собой процесс разрушения диэлектрика, в результате чего диэлектрик теряет электроизоляционные свойства в месте пробоя.

Величину напряжения, при котором происходит пробой диэлектрика, называют пробивным напряжением , а соответствующее значение напряженности электрического поля называется электрической прочностью диэлектрика .

Для равномерного электрического поля электрическая прочность (пробивная напряженность) диэлектрика определяется по формуле

где d — толщина диэлектрика в месте пробоя, м.

Пробой жидких диэлектриков — явление сложное, что объясняется сложным составом жидких диэлектриков и сильным влиянием загрязнений на развитие пробоя. На рис. 5-13 показана зависимость изменения электрической прочности трансформаторного масла от содержания влаги. Наиболее резкое снижение электрической прочности жидких диэлектриков вызывает эмульсионная вода. С повышением температуры эмульсионная вода переходит в растворенную; при этом жидкий диэлектрик становится более однородным и электрическая прочность его повышается.

Рис. 5-13. Изменение электрической прочности трансформаторного масла от содержания в нем воды.

Другие загрязнения (волокна, смолистые вещества и др.) подобно воде понижают электрическую прочность жидких диэлектриков.

Чистота поверхности электродов оказывает существенное влияние на электрическую прочность жидких диэлектриков.

Большая продолжительность воздействия электрического поля на жидкий диэлектрик вызывает резкое снижение пробивного напряжения (рис. 5-14).

Рис. 5-14. Зависимость пробивного напряжения жидкого диэлектрика от времени воздействия на него электрического поля.

Конфигурация электрического поля и полярность электродов также вызывают изменение пробивных характеристик жидких диэлектриков (рис. 5-15 и 5-16).

Рис. 5-15. Зависимость пробивного напряжения трансформаторного масла от расстояния между электродами.
1 — плоскость против шара диаметром 125 мм; 2 — плоскость против острия.

Рис. 5-16. То же, что рис. 5-15, но для постоянного напряжения. Электроды острие — плоскость:
1 — острие отрицательное; 2 — острие положительное.

Пробивное напряжение жидких диэлектриков повышается с увеличением давления (рис. 5-17). Зависимость пробивного напряжения от давления заметно уменьшается с повышением степени очистки электроизоляционных жидкостей, что указывает на большое влияние газообразных примесей.

Рис. 5-17. Зависимость пробивного напряжения трансформаторного масла от давления при 50 Гц.1-невакуумированное масло; 2-вакуумированное масло.

При импульсных воздействиях напряжения на слой жидкого диэлектрика зависимости пробивного напряжения от давления практически не наблюдается. С увеличением плотности жидкого диэлектрика его электрическая прочность линейно возрастает.

Влияние температуры на пробивные характеристики жидких диэлектриков различно в зависимости от их химического состава и степени загрязнения примесями. Заметные изменения электрической прочности с температурой наблюдаются у электроизоляционных жидкостей сложного химического состава, особенно при наличии в них загрязнений (влага, газы и др.). По мере приближения к температуре кипения электрическая прочность жидких диэлектриков резко понижается.

Наибольший практический интерес представляют теории, посвященные процессам пробоя технических электроизоляционных жидкостей. В большинстве этих теорий (авторы Н. Н. Семенов и А. Ф. Вальтер, Эдлер и др.) пробой жидких диэлектриков рассматривается как тепловой процесс, в результате которого в слое жидкого диэлектрика образуются газовые или паровые каналы. Паровая и газовая фазы в жидком диэлектрике возникают при нагреве его токами проводимости, повышенные значения которых наблюдаются в наиболее загрязненных частях диэлектрика. При критических значениях напряженности электрического поля в газовых и паровых каналах начинает развиваться процесс ударной ионизации газа, завершающийся пробоем.

Пробой твердых диэлектриков представляет собой или чисто электрический процесс (электрическая форма пробоя), или тепловой процесс (тепловая форма пробоя). В основе электрического пробоя лежат явления, в результате которых в твердых диэлектриках имеет место лавинное возрастание электронного тока, подобно тому как это наблюдается в процессе ударной ионизации в газообразных диэлектриках.

Характерными признаками электрического пробоя твердых диэлектриков являются:

  1. Независимость или очень слабая зависимость электрической прочности диэлектрика от температуры и длительности приложенного напряжения (до с).
  2. Электрическая прочность твердого диэлектрика в однородном поле не зависит от толщины диэлектрика (до толщин см).
  3. Электрическая прочность твердых диэлектриков находится в сравнительно узких пределах: В/см; причем она больше, чем при тепловой форме пробоя.
  4. Перед пробоем ток в твердом диэлектрике увеличивается по экспоненциальному закону, а непосредственно перед наступлением пробоя наблюдается скачкообразное возрастание тока.
  5. При наличии неоднородного поля электрический пробой происходит в месте наибольшей напряженности поля (краевой эффект).

Тепловой пробой имеет место при повышенной проводимости твердых диэлектриков и больших диэлектрических потерях, а также при подогреве диэлектрика посторонними источниками тепла или при плохом теплоотводе. Процесс теплового пробоя твердого диэлектрика состоит в следующем. Вследствие неоднородности состава отдельные части объема диэлектрика обладают повышенной проводимостью. Они представляют собой тонкие каналы, проходящие через всю толщину диэлектрика. Вследствие повышенной плотности тока в одном из таких каналов будут выделяться значительные количества тепла. Это повлечет за собой еще большее нарастание тока вследствие резкого уменьшения сопротивления этого участка в диэлектрике. Процесс нарастания тепла будет продолжаться до тех пор, пока не произойдет тепловое разрушение материала (расплавление, науглероживание) по всей его толщине — по ослабленному месту.

Читать еще:  Розетки скрытого монтажа шнайдер

Характерными признаками теплового пробоя твердых диэлектриков являются:

  1. Пробой наблюдается в месте наихудшего теплоотвода от диэлектрика в окружающую среду.
  2. Пробивное напряжение диэлектрика снижается с повышением температуры окружающей среды (рис. 5-18).

Рис. 5-18. Зависимость пробивного напряжения твердого диэлектрика от температуры (при тепловом пробое).

Пробивное напряжение снижается с увеличением длительности приложенного напряжения (рис. 5-19).

Рис. 5-19. Зависимость пробивного напряжения твердого диэлектрика от длительности приложенного напряжения (при тепловом пробое).

  • Электрическая прочность уменьшается с увеличением толщины диэлектрика.
  • Электрическая прочность твердого диэлектрика уменьшается с ростом частоты приложенного переменного напряжения.
  • При пробое твердых диэлектриков часто наблюдаются случаи, когда до определенной температуры имеет место электрический пробой, а затем в связи с дополнительным нагревом диэлектрика наступает процесс теплового пробоя диэлектрика (рис. 5-20).

    Рис. 5-20. Зависимость пробивного напряжения от температуры для электротехнического фарфора (а — точка перехода к тепловому пробою).

    Аналогичный переход электрической формы пробоя в тепловую происходит в зависимости от времени выдержки твердого диэлектрика под напряжением.

    Согласно выводам теории теплового пробоя твердых диэлектриков (В. А. Фок, Н. Н. Семенов) можно подсчитать величину пробивного напряжения для простых электроизоляционных конструкций (пластины) по формулам

    а) для постоянного напряжения

    б) для переменного напряжения

    где — функция величины,

    — коэффициент теплоотдачи в окружающую среду; — коэффициент теплопроводности электродов, Дж/(с м °С); — коэффициент теплопроводности диэлектрика Дж/(с м °С); h — половина толщины диэлектрика, м; — толщина электрода, м; а — постоянная, характеризующая рост проводимости диэлектрика с температурой; — диэлектрическая проницаемость твердого диэлектрика (при температуре окружающей среды); — тангенс угла диэлектрических потерь твердого диэлектрика (при температуре окружающей среды); f — частота, Гц.

    По известным значениям вычисляют величину с и, воспользовавшись графиком (рис. 5-21), находят .

    Рис. 5-21. Значения функции. К расчету пробивного напряжения твердого диэлектрика при тепловом пробое (по В. А. Фоку).

    При неограниченном возрастании с величина стремится к пределу, равному 0,66.

    Что такое диэлектрические потери и из-за чего они возникают?

    Мы привыкли считать, что потери электрической энергии происходят в проводниках из-за сопротивления. Это верно, но существуют ещё диэлектрические потери. Они хоть и незначительны, но при определённых условиях их влияние может оказаться ощутимым. О потерях энергии в диэлектрической среде первыми обеспокоились энергетики, применявшие в качестве диэлектрика трансформаторное масло.

    Что такое диэлектрические потери?

    Применение электроизоляционных материалов основано на том, что они препятствуют электрическому току преодолевать некоторое пространство, ограниченное изолятором. Идеальный изолятор должен абсолютно исключить условия для проводимости электрического тока. К сожалению, в природе не существует таких материалов. Таких диэлектриков также не сумели создать в лабораторных условиях.

    Теоретически можно обосновать существование идеальных изоляторов, но синтезировать на практике такие вещества не реально, так как даже ничтожно малая доля примесей образует диэлектрическую проницаемость. Иначе говоря, рассеяния энергии в диэлектрической среде будут наблюдаться всегда. Речь может идти об усилиях, направленных на уменьшение таких потерь.

    Исходя из того, что часть электроэнергии неизбежно теряется в изоляторе, был введён термин «диэлектрические потери» – необратимый процесс преобразования в теплоту энергии электрического поля, пронизывающего диэлектрическую среду, То есть, это электрическая мощность, направленная на нагревание изоляционного материала, пребывающего в зоне действия электрического поля.

    Значение потерь определяется как отношение активной мощности к реактивной. Обычно активная мощность, потребляемая диэлектриком очень мала, по сравнению с реактивной мощностью. Это значит, что искомая величина тоже будет мизерной – сотые доли от единицы. Для вычислений используют величину «тангенс угла», выраженную в процентах.

    Электрическую характеристику, выражающую рассеивающее свойство диэлектрика, называют тангенсом угла диэлектрических потерь. При расчётах принято считать, что диэлектрик является изоляционным материалом конденсатора, меняющего ёмкость и дополняющий до 90º угол сдвига фаз φ, образованный векторами напряжения и тока в цепи. Данный угол обозначают символом δ и называют углом рассеивания, то есть, диэлектрических потерь. Величина, численно равна тангенсу данного угла ( tgδ ), это и есть та самая характеристика диэлектрического нагрева.

    tgδ применяется в расчётах для определения величины рассеиваемой мощности по соответствующей формуле. Поэтому его вычисление имеет практическое значение. Введение понятия тангенса угла позволяет вычислять относительные значения диэлектрических потерь. А это позволяет сравнивать по качеству различные изоляторы.

    Именно этот показатель или просто угол δ производители трансформаторных масел указывают на упаковке своей продукции. По величине угла ( tg δ ) можно судить о качестве изолятора: чем меньше угол δ, тем высшие диэлектрические свойства проявляет изоляционный материал.

    Методика расчета

    Составим схему, в которой включен конденсатор с диэлектриком. При этом активная мощность в данной схеме должна соответствовать мощности, рассеиваемой в диэлектрике рассматриваемого конденсатора, а угол сдвига, образованный векторами тока и напряжения, должен равняться углу сдвига в конденсаторе. Такие условные схемы с последовательным и параллельным включением активного сопротивления представлены на рис. 1. На этой же картинке построены векторные диаграммы для каждой схемы.

    Рис. 1. Эквивалентные схемы диэлектрика Рис. 2. Формулы для расчета

    Значения символов понятны из рисунка 1.

    Заметим, что в качественных диэлектриках величина tg 2 δ очень мала, поэтому ею можно пренебречь. Тогда каждая из формул для вычисления диэлектрических потерь приобретёт вид: Pa = U 2 *ω*C*tδ. Если напряжение в этой формуле выразить в вольтах, угловую частоту ( ω ) в с -1 , а ёмкость C в фарадах, то получим мощность ( Pa ) в ваттах.

    Очевидно, что параметры вычислений на основании приведённых схем зависят от частоты. Из этого следует, что вычислив параметры диэлектриков на одной частоте, их нельзя автоматически переносить для расчётов в других диапазонах частот.

    Механизмы потерь по-разному проявляются в твёрдых, жидких и газообразных веществах. Рассмотрим природу рассеяний в этих диэлектриках.

    Диэлектрические потери в разных диэлектриках

    В газах

    Для газообразных веществ или их включений в материалах диэлектрика характерны ионизационные потери при определённых условиях: когда молекулы газа ионизируются. Например, ионизация газов происходит во время электрических пробоев сквозным током. При этом молекулы газа превращаются в ионы, создавая токопроводящий канал с максимумом напряженности. В результате диэлектрические потери лавинообразно возрастают, стремясь к максимуму tg угла.

    Читать еще:  Управляемые розетки для чего

    При таких диэлектрических потерях мощность стремительно растёт: Ри = А1 f (U – Uи) 3 , где А1 постоянная, зависящая от вида вещества, f — частота поля, а символами U, Uи обозначено приложенное напряжение и напряжение ионизации, зависящее от давления газа.

    Если величина напряжения Uи не достигает порога, необходимого для запуска процесса ударной ионизации, то нагревание диэлектрика является незначительным, потому что, при поляризации, пространственная ориентация дипольных молекул в газах не влияет на электропроводность. Поэтому газы – самые лучшие диэлектрики, с низкими потерями, особенно в диапазоне высоких частот.

    Зависимость тангенса угла рассеивания мощности в диэлектриках с газовыми включениями, иллюстрирует график на рис. 3.

    Рис. 3. Зависимость тангенса угла потерь

    В жидких диэлектриках

    Наличие диэлектрических потерь в жидкостях, в основном зависят от их полярности. В среде неполярных диэлектриков рассеяния обусловлены электропроводностью. При наличии в жидких веществах примесей дипольных молекул (так называемые полярные жидкости), рассеивание мощности может быть значительным. Это связано с повышением электропроводности, в результате дипольно-релаксационной поляризации.

    Жидкие полярные изоляторы имеют выраженную зависимость потерь от вязкости. Поворачиваясь под действием магнитного поля в вязкой среде, диполи, в результате трения, нагревают её. Рассеиваемая мощность жидкого диэлектрика возрастает до тех пор, пока механизмы поляризации успевают за изменениями электрического поля. При достижении максимума поляризации процесс стабилизируется.

    В твердых веществах

    Высокочастотные диэлектрики с неполярной структурой обладают небольшим tg δ. К ним относятся качественные материалы:

    • сера;
    • полимеры;
    • парафин и некоторые другие.

    Потери у диэлектриков с полярной молекулой более значительны. К таким материалам можно отнести:

    • органические стёкла;
    • эбонит и другие каучуковые вещества;
    • полиамиды;
    • целлюлозосодержащие материалы;
    • фенолоформальдегидные смолы.

    Керамические диэлектрики без примесей имеют плотную ионно-решётчатую структуру. У них высокое удельное сопротивление. а значение tg δ таких материалов не превышает величины 10 -3 .

    Вещества с неплотным расположением ионов обладают ионной поляризацией. У них наблюдается также электронно-поляризационная поляризация. tg δ этих диэлектриков ещё выше – от 10 -2 .

    Сегнетоэлектрики и вещества со сложными неоднородными структурами, такие как текстолит, пластмассы, гетинакс и другие, имеют tg δ > 0,1.

    Рассеивание мощности в результате сквозной электропроводимости происходит во всех диэлектриках. Однако потери становятся ощутимыми лишь при частотах от 50 до 1000 Гц, в температурном режиме более 100 ºC. Высокое переменное напряжение, как и удельное сопротивление также влияет на величину рассеивания.

    Виды диэлектрических потерь

    В зависимости от электрических свойств различных видов диэлектриков различают следующие виды диэлектрических потерь, сопровождающихся нагревом диэлектрика:

    • ионизационные потери, наблюдаемые в газах;
    • релаксационные потери в жидких (вязких) диэлектриках, в результате релаксационной поляризации;
    • рассеяние в веществах, имеющих дипольную поляризацию;
    • поляризационное рассеивание в веществах, имеющих сквозную электропроводность;
    • высокочастотные резонансные потери;
    • диэлектрические потери, вызванные неоднородностью структуры твердых диэлектриков.

    Диэлектрические вещества по-разному ведут себя при различных температурах, при постоянном или переменном токе. Максимумы потерь происходят при достижении определённого порога температуры. Этот порог индивидуален для каждого вещества. Тангенс угла δ зависит также от приложенного напряжения (рис. 4).

    Рис. 4. Зависимость тангенса угла от напряжения

    Чем измерить?

    Рассчитывать потери диэлектриков по формуле не очень удобно. Часто величину tg производители определяют опытным путём и указывают на упаковках или в справочниках.

    Существуют специальные измерительные приборы, такие как «ИПИ – 10» (производитель Tettex), «Тангенс – 3М» или измеритель «Ш2», позволяющие с высокой точностью определить уровень рассеивания в диэлектриках либо найти тангенс угла рассеяния. Устройства довольно компактны и просты в работе. С их помощью можно исследовать свойства твёрдых и жидких веществ на предмет диэлектрических потерь.

    Таблица электрического тока в различных средах

    Одним из основных свойств электрического тока, является его способность к проводимости в разных условиях. Степень проводимости для каждого случая отличается между собой. Поэтому, когда изучается электрический ток в различных средах, таблица помогает наглядно представить, какими качествами он обладает в том или ином случае. Все вещества, в соответствии с их электрической проводимостью, разделяются на несколько основных категорий.

    1. Металлы, как проводники электрического тока
    2. Движение электрического тока в полупроводниках
    3. Жидкость и газ – эффективные проводники

    Металлы, как проводники электрического тока

    При прохождении электрического тока в металлах, существенных изменений не наблюдается, за исключением обязательного нагрева. Металлы отличаются высокой концентрацией электронов, влияющих на уровень проводимости. Происходит их постоянное движение с высокой скоростью.

    В узлах кристаллических решеток металлов располагаются положительные ионы, производящие тепловые колебания. В промежутках между ними происходит движение свободных электронов, которым придается ускорение с помощью электрического поля.

    Движение электрического тока в полупроводниках

    Полупроводники обладают собственными свойствами, влияющими на проводимость. Основой их проводимости является р-п переход. Повышение температуры вызывает увеличение удельного сопротивления вещества. При этом, возрастает количество свободных электронов, на месте которых остаются виртуальные заряды, называемые дырками.

    Поэтому, основной особенностью электрического тока в полупроводниках, является движение не только свободных электронов, но и дырок. При росте температуры, проводимость увеличивается из-за резкого снижения сопротивления.

    Жидкость и газ – эффективные проводники

    Всем известно, что дистиллированная вода не является проводником. Однако, если опустить в нее хотя-бы один кристалл обычной соли, произойдет замыкание цепи. Это вызвано появлением в воде свободных носителей зарядов. Происходит явление электролитической диссоциации, когда молекулы распадаются на ионы под воздействием растворителя. Такие жидкие проводники, где содержатся подвижные носители зарядов, называются электролитами.

    Газы в обычном состоянии, как и дистиллированная вода, также являются диэлектриками, поскольку содержат нейтральные молекулы и атомы. Все эти частицы не имеют зарядов и придают газам высокие изолирующие свойства. Для того, чтобы газ стал проводником, в нем необходимо присутствие заряженных частиц в виде свободных носителей зарядов.

    Как правило, проводниками являются ионизированные газы с положительными и отрицательными ионами. Проводимость в газах может быть создана самостоятельно, или путем искусственного внесения в них заряженных частиц.

    Проводники и диэлектрики в электрическом поле

    Применение электрического тока в металлах

    Направление электрического тока

    Определение электрического тока

    Электрический ток – сила тока

    Чем отличаются проводники от полупроводников

    голоса
    Рейтинг статьи
    Ссылка на основную публикацию
    ВсеИнструменты
    Adblock
    detector