Ivalt.ru

И-Вольт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Диэлектрики проводят ток за счет наличия

Общие представления об электропроводности диэлектриков (Материалы на тему диэлектриков. Шпоры, короче)

Описание файла

Документ из архива «Материалы на тему диэлектриков. Шпоры, короче», который расположен в категории «к экзамену/зачёту». Всё это находится в предмете «физика полупроводников» из шестого семестра, которые можно найти в файловом архиве МЭИ (ТУ). Не смотря на прямую связь этого архива с МЭИ (ТУ), его также можно найти и в других разделах. Архив можно найти в разделе «к экзамену/зачёту», в предмете «физика полупроводников» в общих файлах.

Онлайн просмотр документа «Общие представления об электропроводности диэлектриков»

Текст из документа «Общие представления об электропроводности диэлектриков»

Общие представления об электропроводности диэлектриков

Сквозной ток — Iскв (ток утечки) протекает по диэлектрику под воздействием постоянного напряжения — обусловлен наличием в диэлектриках свободных носителей заряда различной природы.

Носители заряда (область слабых полей)

Природа носителей заряда (происхождение)

Газообразные

Положительные и отрицательные ионы

Ионизация молекул газа

В сильных полях также электроны

Главным образом ударная ионизация и фотоионизация молекул газа

Диссоциация молекул примеси (реже собственных молекул)

Коллоидные заряженные частицы

Характерны для эмульсий (коллоидные частицы жидкость) и суспензий(взвешенная фаза твердое вещество)

Носители заряда (область слабых полей)

Природа носителей заряда (происхождение)

Диссоциация примесей или собственных молекул

Точечные дефекты кристаллической решетки: вакансии (пустые узлы) межузельные ионы

Зависят от структуры кристаллического диэлектрика

Электроны проводимости или дырки в заполненной зоне

В диэлектриках с электронным механизмом проводимости

Зависимость тока от времени приложения постоянного напряжения

В момент включения постоянного электрического поля через диэлектрик электрического конденсатора протекает ток смещения — Iсм, обусловленный быстрыми видами поляризаций.

В неполярных однородных диэлектриках затем устанавливается ток сквозной проводимости — Iскв.

В полярных и неоднородных диэлектриках протекает также ток абсорбции — Iабс, вызываемый активными составляющими токов, связанных с установлением замедленных (релаксационных) поляризаций. Во многих диэлектриках, используемых в качестве электрической изоляции, Iабс устанавливается за время меньше 1 мин.

Изменение тока через неполярный диэлектрик в зависимости от времени подключения постоянного напряжения показано на рисунке.

Токи абсорбции

Токи абсорбции могут устанавливаться в диэлектрике в течение длительного времени в зависимости от типа диэлектрика и механизма поляризации. Уменьшение тока Iабс может наблюдаться в течение минут или даже часов. После установления тока абсорбции через диэлектрик будет протекать только ток сквозной проводимости.

При расчете сопротивления изоляции на постоянном напряжении необходимо расчет вести по току сквозной проводимости Iскв, исключая токи абсорбции.

Посмотрите как изменяется ток в зависимости от времени приложения постоянного напряжения к диэлектрику, в котором возникают токи абсорбции.

Электропроводность жидких диэлектриков

Основную роль играют два типа электропроводности: ионная и молионная (катафоретическая).

В неполярных и слабополярных жидкостях носителями заряда в основном являются ионы, возникающие при диссоциации молекул примесей.

Степень диссоциации (отношение числа диссоциированных молекул к общему числу молекул жидкости) зависит от химической природы примесей, концентрации и диэлектрической проницаемости. Степень диссоциации возрастает с увеличением диэлектрической проницаемости.

Собственная ионная электропроводность наблюдается при диссоциации молекул жидкости с ионным характером связи.

Электронная электропроводность может наблюдаться в сильных полях при эмиссии электронов с катода в тщательно очищенных от примесей жидкостях.

Молионная электропроводность характерна для коллоидных растворов, например для многих электроизоляционных лаков в неотвержденном состоянии, содержащих мелкодисперсный наполнитель, пигмент и др. Знак заряда частицы будет положительным, если диэлектрическая проницаемость частиц больше диэлектрической проницаемости растворителя и наоборот. Такие заряженные частицы называют молионами.

Электропроводность жидких диэлектриков

Удельное сопротивление жидкостей уменьшается с ростом температуры по экспоненциальному закону

=B . exp(W/kT) ,

где B — константа, W — энергия диссоциации, k — постоянная Больцмана. По аналогичному закону изменяется и вязкость жидкости.

Удельные проводимости неполярных, слабополярных и сильнополярных жидких диэлектриков приведены в таблице.

Удельное сопротивление , Ом . м

Неполярные жидкости (бензол, трансформаторное масло)

Слабополярные жидкости (совол, касторовое масло)

Сильнополярные жидкости (дистилированная вода, этиловый спирт, ацетон)

Закон Ома в жидкостях нарушается в сильных полях (Е = 0.05 — 0.06 МВ/м). Возможные причины:

диссоциация молекул жидкости, приводящая к резкому росту концентрации ионов;

автоэлектронная эмиссия электронов с катода в тщательно очищенных жидкостях.

Электропроводность твердых диэлектриков

Для твердых диэлектриков наиболее характерна ионная электропроводность. В кристаллических веществах ионную проводимость можно объяснить, исходя из представлений о внутренних нарушениях структуры или дефектах решетки.

Согласно Я.И.Френкелю под действием тепловых флуктуаций ионы получают иногда энергию, достаточную, чтобы покинуть нормальные положения в решетке и попасть в пространство между нормально закрепленными ионами (межузлия).

При тепловом возбуждении эти межузельные ионы перескакивают из одного межузельного положения в другое, а если к кристаллу приложено поле, то в направлении поля более часто. Через диэлектрик будет протекать электрический ток.

Если при движении по кристаллу ион встречает вакантное место, то он снова закрепляется в узле решетки. Такой процесс приводит к обмену атомов местами, то есть к диффузии.

Электропроводность твердых диэлектриков

Коэффициент диффузии D связан с подвижностью соотношением Нернста-Энштейна

/D = e/kT,

где — подвижность, e — заряд, k — постоянная Больцмана, T — температура. Коэффициенты диффузии, вычисленные по этой формуле, при комнатной температуре очень малы, не более 10 -5 см 2 /с, а подвижность 10 -4 см/В . с.

В процессе электропроводности играют роль не только собственные ионы решетки, но и ионы примесей, особенно с высокой подвижностью. К таким ионам относятся ионы Na + , K + , H + , роль которых велика уже при комнатной температуре.

К числу примесных ионов с большой подвижностью относятся такие ионы как Cu + , Au + , Ag + . Для таких ионов D = 10 -5 — 10 -7 см 2 , = 10 -2 — 10 -4 см 2 . с. Возможен и другой механизм электропроводности кристаллов (по Шоттки), при котором дефекты образуются в результате удаления равного числа анионов () и катионов (+) из нормальных узлов решетки и помещении их в новые узлы на внешних и внутренних поверхностях кристалла. В этом случае вакансии перемещаются по кристаллу вследствии переноса в незанятый узел ионов из соседних узлов. Посмотрите, как происходит этот процесс.

Электропроводность твердых диэлектриков

Для многих ионных кристаллов удельная электропроводность экспоненциально зависит от температуры = e . n . = o . exp(-Wa/kT),

где Wa = W/2 + U, а W = Wf или W = Ws — энергия образования дефектов по Френкелю или по Шоттки в зависимости от типа дефектов, U — энергия активации перемещения ионов, меньшая W.

В координатах ln = f(1/T) эта зависимость представляется в виде прямой линии, либо в виде линии с изломом, если имеются два различных механизма проводимости. В этом случае зависимость от 1/T будет представляться суммой двух экспонент

= 1 . exp(-Wa1/kT) + 2 . exp(-Wa2/kT).

Как видно из рисунка, по наклону прямых ln можно найти Wa1 и Wa2 например для Wa1 имеем:

ln 2 — ln 1

. 10 3. k.

(10 3 /T2)-(10 3 /T1)

Электропроводность твердых диэлектриков

Для низкотемпературного участка NaCl по экспериментальным данным Wa = 1,7 — 2,2 эВ.

В низкотемпературной области проводимость в основном определяется примесями и кривая в этой области имеет более слабый наклон, в высокотемпературной области — проводимость за счет собственных ионов (Cl — ).

Обычно Wa1/Wa2 = 1/2, a 1/ 2 = 10 -5 . Следует отметить, что Wa2 не чувствительна к наличию примесей.

Читать еще:  Как режут плитку под розетки

В некоторых твердых неорганических диэлектриках, например в титаносодержащей керамике, возможна электронная или дырочная электропроводность.

Электропроводность полимерных диэлектриков

Электропроводность полимерных диэлектриков носит в основном ионный характер. Источником ионов могут быть как сами молекулы, так и ионогенные примеси. По данным Б.И.Сажина энергия ионизации молекул примесей ионогена всего лишь 0.2 эВ и менее, концентрация свободных ионов в полимерах очень мала и составляет 10 20 — 10 22 м -3 .

Ширина запрещенной зоны у полимерных диэлектриков велика, например у фторопласта-4 W = 10.07 эВ. Однако, у некоторых полимерных диэлектриков может наблюдаться электронная проводимость, например у полимеров с сопряженными двойными связями, у которых ширина запрещенной зоны невелика.

Проводники, изоляторы и полупроводники

Любое тело состоит из молекул и атомов. Атом включает в себя отрицательно заряженные электроны и положительно заряженное ядро. Электроны в атоме совершают орбитальные вращения вокруг ядра. В том случае, если сумма отрицательно заряженных электронов равна положительному заряду, то атом считается электрически нейтральным. В таблице Менделеева порядковый номер элемента определяется числом электронов атома с нейтральным зарядом. Электрический заряд электрона равен -1,6*10 -19 Кл. Заряд ядра по абсолютному значению равен заряду электрона, умноженному на число электронов атома с нейтральным зарядом.

Электроны атомов, как правило, расположены на внешних или внутренних орбитах. Те электроны, что расположены на внутренних орбитах, относительно прочно связываются с ядром атома. Валентные электроны, т.е. те, которые находятся на внешних орбитах, могут отрываться от атома и находиться в «свободном» состоянии до тех пор, пока не присоединятся к новому атому. Атом, у которого отсутствует какое-либо количество электронов называется ионом с положительным зарядом. А вот атом, к которому присоединились электроны, называется ионом с отрицательным зарядом.

Процесс формирования ионов называется — ионизацией.
Количество «свободных» ионов или электронов, т.е. частиц, переносящих заряд, в единице объема вещества называют концентрацией носителей заряда.
Электрический ток — это упорядоченное движение положительно и отрицательно заряженных частиц.
Электропроводность — это способность вещества, под действием электрического поля, проводить через себя электрический ток.

Чем выше концентрация носителей заряда в веществе, тем больше его электропроводность. В зависимости от способности проводить электрический ток, вещества разделяют на 3 группы: проводники, полупроводники и диэлектрики.

Проводники электрического тока

Проводникиэто вещества с высокой электропроводностью. Проводников бывает 2 типа: с электронной проводимостью и ионной проводимостью. К электронной проводимости относятся металлы и их сплавы. В металлах электрический ток создается перемещением электронов. Проходящий через такие проводники ток никак не сказывается на материале и не изменяет его химическую составляющую.

Высокий уровень электропроводности металлов обусловлен тем, что в них много «свободных» электронов, находящихся в состоянии беспорядочного движения и заполняющие объём проводника словно газ. При таком активном движении электроны сталкиваются с ионами неподвижной кристаллической решётки, состоящей из атомов вещества. В следствии чего электроны изменяют направление движения, скорость и свою кинетическую энергию.

Если в проводнике 1-го типа есть электрическое поле, то на заряды проводника действуют силы этого поля, упорядочивая их движение. Свободные электроны двигаются не в хаотическом порядке, а в одном направлении противоположно направлению поля (от минусовой клеммы к плюсовой). Данное упорядоченное движение свободных носителей заряда под действием электрического поля является — электрическим током (проводимости).

Проводники 2-го типа представляют собой растворы или расплавы солей, кислот, щелочей и т. п. в которых не завися от прохождения тока наблюдается электролитическая диссоциация.

Электролитическая диссоциацияэто процесс распада нейтральных молекул на отрицательные и положительные ионы.

Положительные ионами выступают водород и ионы металлов. Отрицательные — гидроксильная группа и кислотные остатки.

Данные растворы или расплавы состоящие из ионов, частично или полностью, называются электролитами. Без воздействия внешнее электрическое поля, молекулы и ионы такого проводника будут находиться в состоянии хаотического движения.

При возникновении в таком проводнике электрического поля, движение ионов приобретает направленное упорядоченное движение, т. е. через проводник протекает ток (проводимости). Положительные ионы двигаются по направлению поля, а отрицательные против.

Полупроводники

Полупроводникиэто вещества, электропроводность которых зависит от температуры, освещенности, электрических полей и примесей. К таким материалам относят: кремний, теллур, германий, селен, соединения металлов с серой и окислы металлов. Полупроводники отличаются еще и тем, что кроме электронной проводимости имеют и дырочную электропроводность. Дырочная электропроводность вызывается движением «дырок» из-за влияния электрического поля. «Дырки» — это свободные места в атомах, которые не заняты валентными электронами. Это подобно тому, что положительно заряженные частицы перемещаются так же, как и заряды, равные зарядам электронов. На сегодняшний день, использование полупроводников широко распространено в разных устройствах и приборах, например, в фоторезисторах и полупроводниковых диодах.

Электрические диэлектрики

Диэлектрикиэто те вещества, в которых при нормальных условиях очень малое количество свободных электрически заряженных частниц. В следствии чего они обладают низкой электропроводностью. К диэлектрикам относятся газы, минеральные масла, лаки и твердые материалы (кроме металлов). Однако, если на диэлектрик будет действовать высокая температура или сильное электрическое поле, то начнется расщепление молекул на ионы, которые потеряют вследствие этого воздействия свои изолирующие свойства.

Лекция 15 электрические характеристики диэлектриков

ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ДИЭЛЕКТРИКОВ

Электропроводность материалов объясняет зонная теория.

Все вещества состоят из ядер (протоны + нейтроны) и электронов, распределённых по орбитам, которым соответствуют определённые энергетические уровни. У проводников валентные электроны, наиболее удалённые от ядра, довольно свободно переходят от одного атома к другому, что и соответствует большой электрической проводимости. Для этого (то есть перехода на другой уровень) электроны должны возбуждаться, то есть получать добавочную энергию – порциями, квантами. В невозбуждённом состоянии электроны могут иметь только определённые значения энергии, соответствующее энергетическим уровням оболочек атома. Эти уровни образуют полосу – зону, которая заполнена электронами. В атомах есть и другие, «дозволенные» уровни энергии, которые электроны могут занять, если получат дополнительную энергию, например, при нагреве. Связь электронов с атомами в таких случаях является непрочной, и электроны легко меняются местами, то есть передвигаются. Если значения энергии заполненной зоны и зоны проводимости перекрываются, то при незначительном возбуждении электроны будут переходить из заполненной зоны в зону проводимости – то есть материал обладает большой электрической проводимостью, это и есть проводник.

У других материалов между уровнями энергии, соответствующих заполненной зоне и зоне проводимости, имеется промежуточная зона недозволенных уровней (запрещённая зона). Это зона значений энергии, которые электроны данного тела не могут иметь. Если запрещённая зона широка, то есть нужно иметь много энергии для ее преодоления, то для перевода электронов из заполненной зоны в зону проводимости теплового возбуждения недостаточно.

Такие материалы называются диэлектриками , в них переход заметного числа электронов в зону проводимости – случайное явление. В большинстве диэлектриков электропроводность в основном не электронная, а ионная, вызванная движением в электрическом поле свободных ионов, появляющихся вследствие диссоциации примесей и части молекул самого диэлектрика.

Основные электрические характеристики диэлектрика:

1) удельное электрическое сопротивление ρ v и ρ s ;

2) диэлектрическая проницаемость Е , относительная – Е r = E / E 0 ;

3) тангенс угла диэлектрических потерь — tg δ ;

Читать еще:  Розетка прицепа камаз цвета проводов

4) электрическая прочность Е пр = U пр : h , В/м .

1. Сопротивление диэлектрика

Способность материала проводить электрический ток называется электрической проводимостью или электропроводностью. Величина ей обратная – электрическое сопротивление.

Если для проводников удельное сопротивление более 10 -9 Ом . м, то для диэлектриков оно более 10 10 ÷ 10 19 Ом . м, поэтому диэлектрики используются как изоляционный материал. Величина сопротивления диэлектриков говорит о том, что сквозной ток проводимости в диэлектриках очень и очень мал. Однако он существует и его тоже надо учитывать.

Ток в диэлектрике, вызванный электропроводностью, называют током утечки. В твёрдых диэлектриках различают два тока утечки – объёмный I v , идущий через толщу диэлектрика, и поверхностный I s , идущий по поверхности диэлектрика. Сумма этих токов определяет общий ток утечки. Соответственно двум видам токов утечки различают объёмное удельное сопротивление ρ v и поверхностное удельное сопротивление ρ s . Единица измерения объёмного удельного сопротивления [ρ v ] – Ом . м. Удельное поверхностное сопротивление численно равно сопротивлению квадрата поверхности материала, когда постоянный ток подведён к двум противоположным сторонам квадрата: [ρ s ] = 1 Ом. Тогда единицы измерения удельных проводимостей: объемной – См/м (сименс/м), поверхностной – См (сименс).

Для определения ρ v и ρ s необходимо разделить в образце диэлектрика токи утечки I v и I s , замерить их отдельно, по напряжению и току посчитать сопротивление и потом уже рассчитать ρ v и ρ s . Для этого используется трёхэлектродная схема (см. учебник).

2. Относительная диэлектрическая проницаемость

Относительная диэлектрическая проницаемость ε r показывает, во сколько раз сила взаимодействия двух электрических зарядов в этом диэлектрике меньше силы взаимодействия этих зарядов в вакууме. Существует также понятие абсолютная диэлектрическая проницаемость:

где ε r – безразмерная величина, а ε о – диэлектрическая проницаемость вакуума (называется также электрической постоянной, это – коэффициент пропорциональности в законе Кулона, ее значение зависит от системы единиц, в СИ она равна 8,85 . 10 -12 или 8,86 . 10 -12 Ф/м (фарад/метр). Диэлектрическая проницаемость характеризует процесс поляризации диэлектрика во внешнем электрическом поле.

Поляризацией называется смещение электрических зарядов в диэлектрике под действием приложенного электрического поля. В атомах и молекулах диэлектрика электроны и ионы упруго связаны, в целом они электрически нейтральны. При наложении электрического поля по-разному заряженные частицы атома стремятся к противоположно заряженным электродам, при этом они изменяют своё пространственное положение, они смещаются друг относительно друга (хотя и не намного). При этом частицы превратятся в диполи , то есть материальные частицы, несущие на одном конце положительный, на другом отрицательный заряды, пространственно смещённые на некоторое расстояние и электрически не компенсирующие друг друга.

Таким образом, под действием электрического поля в изоляторе возникает особый электрический ток в форме пространственно ограниченного перемещения остающихся взаимосвязанными положительных и отрицательных зарядов. Такой ток называется током смещения . Если направление поля остаётся неизменным, ток смещения длится короткое время, затем прекращается. Если поле будет периодически менять свой знак, заряды будут перемещаться то в одну, то в другую сторону, и в диэлектрике всё время будет иметь место ток смещения.

Различают следующие виды поляризации :

1) электронная – смещение электронов внутри атомов (на малые расстояния в пределах данного атома);

2) ионная – образуется смещением ионов во внешнем электрическом поле, если диэлектрик является ионным кристаллом, например, поваренная соль NaCl: (–)←Na + Cl — →(+). Ионы смещаются на небольшие расстояния от положения равновесия.

Эти два вида поляризации называются упругими, так как при исчезновении электрического поля электроны и ионы возвращаются на свои места без необратимого поглощения энергии. Электронная поляризация есть всегда, в любом диэлектрике при его попадании во внешнее электрическое поле, ионная накладывается на электронную (но её может и не быть).

Другие виды поляризации называются неупругими , так как происходят с потерями энергии, которая переходит в тепло).

3) дипольная поляризация – возникает, если молекулы диэлектрика несимметричны и поэтому обладают электрическим дипольным моментом (вода, гидроксильная группа ОН и другие). Без внешнего электрического поля все молекулы-диполи ориентированы по-разному, в целом диэлектрик неполяризован. Во внешнем электрическом поле все молекулы-диполи выстраиваются в направлении поля, на поверхнистях диэлектрика появляются заряды. Поворот молекул происходит с «трением», то есть потерями энергии. Дипольная поляризация добавляется к ионной (если она есть) и электронной (которая есть всегда) поляризации.

4) ионно-релаксационная – в некоторых твёрдых диэлектриках отдельные ионы слабо связаны с другими (из-за примесей, дефектов кристаллической решётки, своей химической природы) и могут быть переброшены внешним электрическим полем.

5) миграционная поляризация – образуется в слоистой, твёрдой изоляции, состоящей из разных диэлектриков.

6) доменная поляризация – присуща сегнетоэлектрикам, веществам, в которых имеется спонтанная поляризация – без наличия внешнего электрического поля в диэлектрике есть области со смещенными электрическими зарядами. Во внешнем электрическом поле они могут переориентироваться, значит, их относительная диэлектрическая проницаемость зависит от напряженности электрического поля, а также от температуры.

От комбинации разных видов поляризации (то есть от вида диэлектрика) зависит способность материала к поляризации, которая и характеризуется абсолютной диэлектрической проницаемостью. Относительная диэлектрическая проницаемость определяет ёмкостные свойства диэлектрика, показывает, во сколько раз ёмкость конденсатора с диэлектриком больше ёмкости того же самого конденсатора в вакууме.

3. Тангенс угла диэлектрических потерь

Если на обкладки конденсатора, находящегося в вакууме, подать напряжение U, то на обкладках накопится заряд Q о = C о . U и между обкладками образуется электрическое поле, напряжённость которого будет E = U/h, В/м .

Если между обкладками поместить диэлектрики, то в диэлектрике возникнут:

1) т ок утечки , образующийся свободными зарядами (электронами и ионами примесей и самого диэлектрика), которые движутся к противоположно заряженным электродам под действием кулоновских сил (их величину можно рассчитать по закону Кулона). По пути к электродам носители свободных зарядов сталкиваются с атомами диэлектрика и передают им часть своей энергии, которую сами они получают от внешнего поля – то есть происходит потеря энергии (она превращается в тепловую). Этот ток мал и быстро уменьшается (за 10 -15÷16 с), называется ток утечки или активный ток.

2) т ок смещения , образующийся смещением электрических зарядов, носителями которых могут быть связанные электроны, ионы, диполи, домены и т. д., – в самом диэлектрике возникают электрические заряды, которые создают электрическое поле обратного направления, это внутреннее поле ослабляет внешнее электрическое поле, уменьшает его напряженность. Однако U = const, поэтому для компенсации внутреннего электрического поля на обкладки конденсатора «натекает» дополнительный заряд, суммарный заряд Q становится больше заряда в вакууме Q о . Относительная диэлектрическая проницаемость ε r = Q/Q о , а так как Q = C . U, то ε r = C/C о — то есть показывает, во сколько раз ёмкость конденсатора с диэлектриком больше С о в вакууме (ε = ε r . ε о ,Ф/м).

Ток смещения образуется перемещением электрических зарядов в пространстве, но «центр тяжести» зарядов остаётся на месте! Смещение электрических зарядов во внешнем электрическом поле называется поляризацией . В зависимости от вида диэлектрика (от его физической природы, химического состава) в нём имеются разные поляризации – упругие и неупругие – поэтому токи смещения в разных диэлектриках будут разными по природе и величине. Если U = const, то оба тока пропадают по окончании установления электрического поля в конденсаторе. Если U = var, то оба тока наблюдаются всё время приложения напряжения: I c = ω . C . U, где ω = 2πf.

Читать еще:  Витая пара обжим розетки двойной

Построим векторную диаграмму токов в диэлектрике.

Диэлектрики

Вы будете перенаправлены на Автор24

Что такое диэлектрики

Диэлектриками называют вещества, которые не способны проводить электрический ток.

Изоляторов, которые абсолютно не проводят электрический ток, в природе не существует. Диэлектрики в $10^ <15>-10^<20>$ раз хуже проводят ток, чем проводники. Дело в том, что в диэлектриках отсутствуют свободные заряды.

Если диэлектрик внести в электрическое поле, то и поле, и сам диэлектрик сильно изменяются. В изначально не заряженных диэлектриках в присутствии поля возникают электрические заряды. Происходит явление поляризации вещества, то есть на диэлектрике в поле возникают электрические полюсы. Заряды, которые появляются при этом, называют поляризационными зарядами. Отделить друг от друга поляризационные заряды не возможно. В этом состоит их существенное отличие от индукционных зарядов в проводниках. Такое отличие объясняется тем, что в металлах присутствуют электроны, которые могут перемещаться на значительные расстояния. В диэлектриках положительные и отрицательные заряды связаны между собой и могут смещаться только в пределах одной молекулы, то есть на очень небольшие расстояния.

Диэлектрики состоят или из нейтральных молекул, или из заряженных ионов, которые закреплены в положениях равновесия, например в узлах кристаллической решетки. Ионные кристаллические решетки могут быть разбиты на «элементарные ячейки», которые в целом нейтральны.

Под действие электрического поля, в отличие от проводников, заряды в диэлектрике не срываются полем со своего места, а только слегка смещаются. Диэлектрик в отсутствии электрического поля условно можно представить как совокупность молекул, в каждой из которых положительные и отрицательные заряды равные по величине распределены по всему объему вещества. В состоянии поляризации диэлектрика заряды каждой молекулы смещаются в противоположные стороны, таким образом, один конец молекулы становится положительно заряженным, другой отрицательно. То есть молекула превращается в электрический диполь. Равнодействующая электрических сил, которые действуют на нейтральную молекулу диэлектрика в однородном поле, равна нулю, так как центр тяжести молекулы остается неподвижным. Молекула просто деформируется.

Существуют диэлектрики, в которых молекулы имеют дипольный момент в отсутствии электрического поля (полярные молекулы). Если поле отсутствует, то полярные молекулы участвуют в тепловом движении, ориентированы беспорядочно. При внесении диэлектрика в поле, молекулы ориентируются в основном в направлении поля. Следовательно, диэлектрик поляризуется. У симметричных молекул, например, $O_2, N_2,$ при отсутствии поля центы тяжести отрицательных и положительных зарядов совпадают, вследствие, чего собственного дипольного момента у молекул нет (неполярные молекулы). У несимметричных молекул ($<например, H>_2O, CO$) центры тяжести сдвинуты друг относительно друга, в результате чего молекулы имеют дипольный момент и называются полярными.

Существуют диэлектрические кристаллы (ионные кристаллы), которые строятся из ионов противоположного знака. Подобный кристалл состоит из двух кристаллических решеток, положительной и отрицательной, вдвинутых одна в другую. Кристалл в целом можно уподобить гигантской молекуле. При наложении электрического поля происходит сдвиг одной решетки относительно другой, так происходит поляризация ионных кристаллов. Существуют кристаллы, которые поляризованы и без поля. При дальнейшем изучении поведения диэлектриков в электрических полях механизм возникновения поляризации значения иметь не будет. Существенным является лишь то, что поляризация диэлектрика проявляется через возникновение некомпенсированных макроскопических зарядов. Когда диэлектрик не поляризован, объемная плотность его зарядов ($rho $) и поверхностная плотность ($sigma $) равны нулю. В результате поляризации $sigma ne 0$, а иногда и $rho ne 0.$ Поляризация сопровождается возникновением в тонком поверхностном слое диэлектрика избытка связанных зарядов одного знака. В том случае, если перпендикулярная составляющая напряженности поля $overrightarrowne 0$ на выделенном участке, то под действием поля заряды одного знака уходят внутрь, а другого выходят наружу.

Вектор поляризации

Степень поляризации диэлектрика характеризуется поляризованностью ($overrightarrow

$) или вектором поляризации:

где $overrightarrow$ — дипольный момент элемента диэлектрика. Для неполярных молекул вектор поляризованности можно определить, как:

где суммирование идет относительно всех молекул в объеме $triangle V$. $N$ — концентрация молекул, $overrightarrow$ — индуцированный дипольный момент (Он одинаковый у всех молекул). $overrightarrowuparrow uparrow overrightarrow.$

Формула поляризованности для полярных молекул имеет вид:

где $leftlangle overrightarrow

rightrangle $ — среднее значение дипольных моментов, которые равны по модулю, но разнонаправлены. В изотропных диэлектриках средние дипольные моменты совпадают по направлению с напряженностью внешнего электрического поля. У диэлектриков с полярного типа молекулами, вклад в поляризованность от наведенных зарядов много меньше, чем вклад от переориентации поля.

Ионная решеточная поляризации описывается формулой (3). В большинстве случаев такая поляризация является анизотропной.

Если представить плоский конденсатор, который заполнен диэлектриком (рис.1), то на левой обкладке его находится положительный заряд, на правой — отрицательный. Так как притягиваются разноименные заряды, то у положительной обкладки возникнет на поверхности диэлектрика отрицательный заряд, а у правой (отрицательной) — положительный заряд диэлектрика. Получается, что поле, которое создают поляризационные заряды, направлено против поля, которое создают обкладки, то есть диэлектрик ослабляет поле.

$+q, -q$ — заряды на обкладках конденсатора.

$overrightarrow$ — напряженность поля, которое создается обкладками конденсатора.

$-q’, +q’$ -заряды диэлектрика.

$overrightarrow‘$ — напряженность поля, которое создается в результате поляризации диэлектрика.

Влияние вещества на электрические и магнитные поля было открыто Фарадеем эмпирически. Именно он ввел в науку термины диэлектрик и диэлектрическая постоянная.

Если однородный изотропный диэлектрик заполняет полностью объем, который ограничен эквипотенциальными поверхностями поля сторонних зарядов, то напряженность поля внутри диэлектрика в $varepsilon $ раз меньше, чем напряженность поля сторонних зарядов.

Напряженность поля точечного заряда, который находится в диэлектрике с диэлектрической проницаемостью $varepsilon$, равна:

Закон Кулона для зарядов, находящихся в жидком и газообразном диэлектрике имеет вид:

Готовые работы на аналогичную тему

Задание: Бесконечную плоскую пластину из однородного изотропного диэлектрика поместили в однородное электростатическое поле напряженностью $E=200frac<В><м>$ перпендикулярно силовым линиям поля. Диэлектрическая проницаемость диэлектрика равна 2. Какова напряженность поля внутри диэлектрика.

Поле в вакууме в $varepsilon $ раз сильнее, чем в диэлектрике, поэтому запишем, что:

Ответ: Напряженность поля в пластине будет 100$frac<В><м>$.

Задание: Заряженные шарики имеют массы $m_1=m_2=m. Они $подвешены на нитях одинаковой длины в одной точке, их заряды равны $q_1$ и $q_2$.(рис.1). Сначала они находятся в воздухе (диэлектрическая проницаемость $_1$) за тем погружены в жидкость $_<2.>$ Каково отношение диэлектрических проницаемостей $(frac<_<2.>><_1>)$, если при погружении в жидкость системы из шариков угол расхождения нитей не изменился? Отношение плотности шариков к плотности диэлектрика ($frac<_><_d>$)=b.

Запишем условие равновесия шарика (одного, так как система симметрична) в воздухе:

Запишем условие равновесия шарика (одного) в жидкости:

Запишем проекции уравнения (2.1.) на оси:

Проекции уравнения (2.2) на оси:

Разделим уравнение (2.3) на (2.4), получим:

Уравнение (2.5) на уравнение (2.6), имеем:

По закону Кулона запишем выражения для $F_, F_$:

Модуль силы Архимеда равен:

Подставим в уравнение (2.8) уравнения (2.9) и (2.10), получим:

Ответ: Диэлектрическая проницаемость жидкости должна быть $frac<_2><е_1>=frac<1><1-b>$.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector