Ivalt.ru

И-Вольт
11 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Ток потребления светодиода синего

Напряжение на светодиоде

В сети «гуляют» таблицы со следующими величинами рабочего напряжения светодиодов:
белые 3-3,7 v
синие 2,5-3,7 v
зеленые 2,2-3,5 v
желтые 2,1-2,2 v
красные 1,6-2,03 v

В то же время производители конкретных SMD светодиодов дают следующие напряжение питания светодиодов:

Напряжение красного светодиода самое низкое, а белого – самое высокое.

На цвет свечения светодиода влияют добавки в полупроводнике. Корректировать цвет удается нанесением люминофора, так, например, получают из голубого свечения белый свет.

Падение напряжения на светодиоде зависит не только от цвета свечения, но и от конкретного типа, протекающего тока, температуры и старения. Отвод тепла в лампах, светильниках и прожекторах является очень важной задачей, т.к. сильно влияет на степень деградации светодиодов. .

На практике самым важным параметром светодиода, от которого зависит срок его службы, является номинальный ток. Для светодиодов увеличение тока на 20% выше номинального сокращает срок их службы в несколько раз. Поэтому для светодиодов стабилизатор напряжения не обязателен, важнее поддерживать заданный ток с помощью специальных драйверов, которые автоматически поддерживают ток в широком диапазоне колебаний напряжения питания. «Правильные» драйверы обеспечивают нормальную работу светодиодной лампы в диапазоне питающего напряжения 60-260 вольт.

В случае использования токограничивающих резисторов, напряжение желательно стабилизировать. КПД при таком включении складывается из КПД стабилизатора напряжения и потерь на резисторе и не превышает 80%, в то время как КПД современных драйверов-стабилизаторов тока не ниже 95%.

Наличие технологического разброса прямого падения напряжения даже у диодов произведённых в одном технологическом цикле, делает нежелательным их параллельное включение. Проблема решается уменьшением тока через светодиоды с соответствующей потерей яркости свечения, либо установкой ограничительного резистора на каждый led.

При последовательном включении все светодиоды в гирлянде, должны быть одного типа или иметь одинаковый рабочий ток.

Следует помнить, что светодиод пропускает ток только при подаче на катод отрицательного напряжения, а на анод положительного. При обратном включении ток протекает при повышенном напряжении и следствием может стать пробой и выход из строя. Допустимое обратное напряжение, как правило, находится в пределах 5 вольт. При питании переменным током надо использовать встречно-параллельное включение диодов.

Зависимость интенсивности излучения светодиода от прямого тока нелинейная, при увеличении тока интенсивность излучения растет не пропорционально.

Технические характеристики и параметры светодиодов

Существует множество светодиодов различных форм, размеров, мощностей. Однако любой светодиод — это всегда полупроводниковый прибор, в основе которого — прохождение тока через p-n-переход в прямом направлении, вызывающее оптическое излучение (видимый свет).

Принципиально все светодиоды характеризуются рядом конкретных технических характеристик, электрических и световых, о которых мы и поговорим далее. Данные характеристики вы сможете найти в даташите (в технической документации) на светодиод.

Электрические характеристики — это: прямой ток, прямое падение напряжения, максимальное обратное напряжение, максимальная рассеиваемая мощность, вольт-амперная характеристика. Световые параметры — это: световой поток, сила света, угол рассеяния, цвет (или длина волны), цветовая температура, световая отдача.

Прямой номинальный ток (If – forward current)

Номинальный прямой ток — это ток, при прохождении которого через данный светодиод в прямом направлении, производитель гарантирует паспортные световые параметры данного источника света. Другими словами, это рабочий ток светодиода, при котором светодиод точно не перегорит, и сможет нормально работать на протяжении всего срока эксплуатации. В этих условиях p-n-переход не будет пробит и не перегреется.

Кроме номинального тока есть еще такой параметр, как пиковый прямой ток (Ifp – peak forward current) – максимальный ток, который можно пропускать через переход лишь импульсами длительностью по 100 мкс при коэффициенте заполнения не более DC = 0.1 (точные данные — см.даташит). Теоретически максимальный ток — это предельный ток, который кристалл может выдерживать лишь кратковременно.

На практике величина номинального прямого тока зависит от размера кристалла, от типа полупроводника, и лежит в диапазоне от единиц микроампер до десятков миллиампер (для светодиодных сборок типа COB — еще больше).

Прямое падение напряжения (Vf – forward voltage)

Прямое падение напряжения на p-n-переходе, вызывающее номинальный ток светодиода. Напряжение прикладывается к светодиоду так, что анод имеет положительный потенциал относительно катода. В зависимости от химического состава полупроводника, от длины волны оптического излучения, различаются и прямые падения напряжения на переходе.

Кстати, по прямому падению напряжения можно определить химический состав полупроводника. А вот приблизительные диапазоны прямых падений напряжений для различных длин волн (цветов света светодиодов):

Инфракрасные светодиоды с длиной волны более 760 нм на базе арсенида галлия имеют характерное падение напряжения менее 1,9 В.

Красные (например галлия фосфид — от 610 нм до 760 нм) — от 1,63 до 2,03 В.

Оранжевые (галлия фосфид — от 590 до 610 нм) — от 2,03 до 2,1 В.

Желтые (галлия фосфид, от 570 до 590 нм) — от 2,1 до 2,18 В.

Зеленый (галлия фосфид, от 500 до 570 нм) — от 1,9 до 4 В.

Синий (селенид цинка, от 450 до 500 нм) — от 2,48 до 3,7 В.

Фиолетовый (индия-галлия нитрид, от 400 до 450 нм) — от 2,76 до 4 В.

Ультрафиолетовый (нитрид бора, 215 нм) — от 3,1 до 4,4 В.

Белые (синий или фиолетовый с люминофором) — около 3,5 В.

Максимальное обратное напряжение (Vr – reverse voltage)

Максимальное обратное напряжение светодиода, как и любого светодиода, — это такое напряжение, при прикладывании которого к p-n-переходу в обратной полярности (когда потенциал катода больше потенциала анода) происходит пробой кристалла, и светодиод выходит из строя. Подавляющее большинство светодиодов имеют обратное максимальное напряжение в районе 5 В. Для сборок COB – еще больше, а для инфракрасных светодиодов бывает и до 1-2 вольт.

Максимальная мощность рассеяния (Pd — total power dissipation)

Эта характеристика измеряется при температуре окружающей среды в 25°C. Это та мощность (зачастую в мВт), которую корпус светодиода еще способен рассеивать непрерывно, и не перегорит. Она вычисляется как произведение падения напряжения на текущий через кристалл ток. Если это значение будет превышено (произведение напряжения на ток), то очень скоро кристалл будет пробит, произойдет его тепловое разрушение.

Вольт-амперная характеристика (ВАХ — график)

Нелинейная зависимость тока через p-n-переход от приложенного к переходу напряжения, называется вольт-амперной характеристикой (сокращенно — ВАХ) светодиода. Эта зависимость изображается в даташите графически, и по имеющемуся в распоряжении графику можно очень просто увидеть, какой ток при каком напряжении пойдет через кристалл светодиода.

Характер ВАХ зависит от химического состава кристалла. ВАХ оказывается очень полезна при проектировании электронных устройств со светодиодами, ведь благодаря ей можно без поведения практических измерений узнать, какое напряжение необходимо приложить к светодиоду, чтобы получить заданный ток. Еще с помощью ВАХ можно более точно подобрать к диоду токоограничительный резистор.

Сила света, световой поток (luminous intensity, luminous flux)

Световые (оптические) параметры светодиодов измеряются еще на стадии их производства, при нормальных условиях и на номинальном токе через переход. Температура окружающей среды принимается равной 25°C, устанавливается номинальный ток, и измеряются сила света (в Кд — кандела) или световой поток (в Лм — люмен).

Под световым потоком в один люмен понимают световой поток, испускаемый точечным изотропным источником с силой света, равной одной канделе, в телесный угол в один стерадиан.

Слаботочные светодиоды характеризуются непосредственно силой света, которая указывается в милликанделах. Кандела — это единица силы света, а одна кандела — это сила света в заданном направлении источника, испускающего монохроматическое излучение частотой 540·1012 Гц, энергетическая сила света которого в этом направлении составляет 1/683 Вт/ср.

Другими словами, сила света количественно отражает интенсивность светового потока в определенном направлении. Чем меньше угол рассеяния — тем больше будет сила света светодиода при одном и том же световом потоке. Например сверхъяркие светодиоды обладают силой света в 10 и более кандел.

Читать еще:  Диаметр кабеля для тока 20 а

Угол рассеяния светодиода (Viewing angle)

Эта характеристика часто описывается в документации на светодиоды как «двойной угол половинной яркости тэта», и измеряется в градусах (deg-degrees-градусы). Название именно таково, поскольку светодиод как правило имеет фокусирующую линзу, и яркость не по всему углу рассеяния получится равномерной.

Вообще этот параметр может лежать в диапазоне от 15 до 140°. У SMD светодиодов этот угол шире, чем у выводных собратьев. Например 120° для светодиода в корпусе SMD 3528 — это нормально.

Длина волны света (Dominant Wavelength)

Измеряется в нанометрах. Характеризует цвет излучаемого светодиодом света, который в свою очередь зависит от длины волны и от химического состава полупроводникового кристалла.

Инфракрасное излучение имеет длину волны более 760 нм, красный цвет — от 610 нм до 760 нм, желтый — от 570 до 590 нм, фиолетовый — от 400 до 450 нм, ультрафиолетовый — менее 400 нм. Белый свет выделяется при помощи люминофоров из ультрафиолетового, фиолетового или синего.

Цветовая температура (CCT — Color Temperature)

Данная характеристика задается в документации на белые светодиоды и измеряется в кельвинах (К). Холодный белый (около 6000К), теплый белый (около 3000К), белый (около 4500К) — точно показывает оттенок белого света.

В зависимости от цветовой температуры, цветопередача будет разной, и воспринимается человеком белый цвет с разной цветовой температурой — по разному. Теплый свет более комфортен, он лучше подойдет для дома, холодный — больше подходит общественным помещениям.

Для светодиодов, применяемых для освещения сегодня, данная характеристика находится в районе 100 Лм/Вт. Мощные модели светодиодных источников света превзошли компактные люминесцентные лампы (КЛЛ), и достигают 150 и более Лм/Вт. По сравнению с лампами накаливания, светодиоды превосходят их по световой отдаче более чем в 5 раз.

В принципе, световая отдача численно показывает, насколько эффективен источник света в плане энергопотребления: сколько ватт требуется для получения определенного количество света — сколько люмен наватт.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Ток потребления светодиода синего

DmitriyN.

Администратор проектов Peling

9 thoughts on “ Отличие светодиода на 1 ватт и 3 ватта. ”

Спасибо Дима. Да, разница огромная как ни крути. Одно таки не понятно, как может лампа мощностью 9 ватт показывать только 3,5. По моему если даже в лампу поставить 10 светодиодов по 3 ватта, то она не станет светить как 300 ватная лампа. А китайцы считают именно так. Вот у тебя на потолке висит светодиод, он один, и реально на 50 ватт, к нему вообще не возникает вопросов, он свои 50 ватт отрабатывает.
в общем световой поток светодиодов может освещать лишь определённое пространство. Из этого и нужно исходить. Китайцы всё продумали до мелочей. Берём пространство квартиры и делим его на пространство которое может осветить 3х ваттный светодиод и получаем количество светодиодов необходимое для полноценного освещения. Думаю их нужно будет очень много.

Согласен что нас вводят в заблуждение, и народ просто не знает какую информацию принимать при выборе ламп, так как нет понятия что сто ватт это именно потребление сто ватт а не мощность света.

Для того люмены и были придуманы вместо кандел, чтобы ввести людей в заблуждение.
1кандела (свеча) — понятное количество света, равномерное по всему радиусу свечения.
1люмен — характеристика луча (пучка) света.

Если бы мы могли собрать в кучу (или точнее сказать «пучок») свет от свечи, то мы бы получили достаточно мощный лазер, способный зажечь свечу на достаточно большом расстоянии.

Как то не правильно так сравнивать, напряжение питания у них не даром с разбросом указаны. одному 3,3в достаточно, а другому может мало и токи разные через них протекают. (если так тестить то хотя бы амперметр в цепь включить чтоб ваттаж расчитать)
Питать надо от драйвера, например 350ма и заодно напругу на них померить. один может 3в*350ма=1,05вт жрать, а другой 3,8в*350ма=1,33вт. соответственно и яркость будет разная.

Напряжение питания у них одинаковое, дальше идет разгон а значит срок службы меньше!

Напряжение питания — параметр для светодиода неприменимый. Нет у светодиодов такой характеристики, поэтому нельзя подключать светодиоды к источнику питания напрямую. Главное, чтобы напряжение, от которого (через резистор) питается светодиод, было выше прямого падения напряжения светодиода (прямое падение напряжения указывается в характеристике вместо напряжения питания и у обычных индикаторных светодиодов колеблется в среднем от 1,8 до 3,6 вольт).
Напряжение, указанное на упаковке светодиодов — это не напряжение питания. Это величина падения напряжения на светодиоде. Эта величина необходима, чтобы вычислить оставшееся напряжение, «не упавшее» на светодиоде, которое принимает участие в формуле вычисления сопротивления резистора, ограничивающего ток, поскольку регулировать нужно именно его.
Изменение напряжение питания всего на одну десятую вольта у условного светодиода (с 1,9 до 2 вольт) вызовет пятидесятипроцентное увеличение тока, протекающего через светодиод (с 20 до 30 милиампер).

Для каждого экземпляра светодиода одного и того же номинала подходящее для него напряжение может быть разным. Включив несколько светодиодов одного и того же номинала параллельно, и подключив их к напряжению, например, 2 вольта, мы рискуем из-за разброса характеристик быстро спалить одни экземпляры и недосветить другие. Поэтому при подключении светодиода надо отслеживать не напряжение, а ток.

Что-то мы не про одни и те-же светодиоды говорим, мои например берут один и тот же ток и им хоть 5 А давай будет потреблять столько сколько ему нужно.
А вот напряжение при том же токе увеличивает его яркость, и уменьшает время жизни.

Хм, я конечно извиняюсь, но при всем уважении к вашим практическим занятиям, не мешало бы подучить теорию. Подают напряжение, а ток в цепи протекает, при 5А через диод он сразу сгорит. погуглить «драйвер светодиодный».
девайс, который регулируя напряжение поддерживает постоянный ток в цепи. Они как раз и стоят в внутри светодиодных ламп, например 9-12в на 350ма в 3хдиодной.

В качестве наглядного эксперимента предлагаю подать на светики из одной коробки 3,3в без резюка. можно при этом включив последовательно амперметр. Будете удивлены разной яркостью свечения (разным токам в цепи)

зы в этих кЕтайских якобы 12вт лампах стоят 1W светодиоды.

Автор, для факта вы говорите что плохо греется светодиод даже 1Вт, нагревается свыше 100 градусов без радиатора, а за такое время работы как у вас он не просто потерял бы эффективность а мог бы расплавиться или сгореть и это факт а не предположение. В вашем случае это не тестирование характеристик а так проверка работоспособности.

Для начала надо подать напряжение 3-3,3В не в холостом ходе а ПОД НАГРУЗКОЙ и добиться 300мА (как правило 300мА, реже 350мА) для 1Вт светодиода, вот тогда попробуйте его в руке подержать!

И еще под сомнением ваша фирменность товара. Покупал я за 8$ 100 таких же 1Вт светодиодов — ох..но ярких светиков, собрал 7Вт настольный светильник. И на фото видел лампочку светодиодную с золотистым радиатором (статья про выключатель с датчиком движения) у меня там стояли 3х1Вт светодиоды и драйвер на 2Вт думаю у вас так же. Это я к тому что китайские светики еще и фору вашим фирменным дадут. Если есть люксметр прошу замерить и мы сравним!

Читать еще:  Выключатель уличного света с пультом дистанционного управления

Как подключать мощные светодиоды, от чего

  • Сообщений: 509
  • Репутация: 12
  • Спасибо получено: 161

Эта тема поможет вам разобраться с подключением мощных светодиодов, которые еще называют High Power LED
их мы используем для светодиодных ламп для растений или как их некоторые называют — фитоламп.
Многие плавают в вопросе, как подключать светодиоды, что следует учитывать, какие параметры. Много вопросов возникает на тему, от чего нужно запитать светодиоды. Чем же руководствоваться при подключении и сборе своей первой светодиодной лампы для выращивания рассады или других растений.

Подключение светодиодов очень простое, вспомните школьный курс физики и соблюдайте некоторые правила.
Как же правильно подключить светодиод, чтоб он не сгорел и светил Вам долго.
Главный параметр у светодиода — ток(I), а не напряжение (V),
т.е. светодиод надо запитывать стабилизированным током, величина которого указывается производителем на конкретный тип светодиодов.
Обычно 1W имеет максимально допустимый ток 350 mA
3W — максимум 700 мА и 5W — 1400 mA, но у пятиватных светодиодов могут отличаться из-за соединения нескольких чипов разными способами.
Запомните, превышение тока — верная смерть светодиода. Так же как и плохой теплоотвод, но про теплоотвод в другой раз.

Ток на светодиоды можно ограничить резистором и подключить от блока питания, а можно подключить к драйверу светодиодов (стабилизатору тока). Подключение светодиодов через драйвер является предпочтительнее, так как драйвер обеспечивает стабильный ток на светодиоде независимо от изменения напряжения на его входе.

Подключение светодиода к драйверу.
Мы подключаем светодиоды последовательно. Плюс к минусу, плюс к минусу.
Плюс первого светодиода на вывод драйвера с плюсом и последнего светодиода минус к минусу драйвера.

При последовательном подключении светодиодов падение напряжения на светодиоде, указанное производителем, умножается на количество светодиодов в цепочке. Например, у нас 3 светодиода с номинальным током 350 mA. и падением напряжения 3.0 вольта, 3.0х3=9 вольт, т.е. нам будет нужен стабализированный источик тока 350 mA. 9 Вольт, а берём с запасом 10-12 вольт.
Можно использовать в цепочки светодиоды разной длины волны. Например, синие 445 и красные 660 нм, падение напряжения на них разное.
На синих 3,2-3,3 В, на красных 2,2 В , напряжения складываются и мы подбираем нужный источник питания, блок питания или драйвер для мощных светодиодов. Запас 15-20% принимайте это как должное.

Параллельное соединение —
плюс соединяется с плюсом, минус с минусом. При параллельном соединении суммируется ток, падение напряжения остаётся неизменным, т.е., если у Вас 3 светодиода с параметрами: 350 mA. 3.0 V., то 0.35+0.35+0.35=1.05 А. Вам нужен источник тока с параметрами 3-5 V. 1.05 А

Если мы используем драйвер для светодиодов, то резисторы нам не нужны.

Последовательно-параллельное соединение, можно использовать, но помнить, что нужно хорошо сбалансировать нагрузку в каждой ветви.
Иначе может получится перекос и одни светодиоды будут гореть ярко и скоро перегорят, а другие будут светить тускло.

В случае подключения светодиодов к источнику питания без стабилизации, нам нужно ограничить ток резистором.
Этот вариант для самых экономных, его можно использовать для экспериментов, а так же если не жалко светодиодов и денег.
Или если вам нужно подключить всего несколько светодиодов для подсветки растения, например 3-5 шт. которых возможно хватит для подсвечивания одного не большого растения. В общем я его не советую, это минимум защиты, минимум срока службы, минимум надёжности и высокая вероятность, что
лампа для растений вас подведёт в самый не подходящий час.

Но всё же, у нас есть лишний БП и нет денег. рассмотрим и такой вариант

Если поискать в интернете, легко найти онлайн программы для расчета сопротивления, там вы введёте параметры и получите сопротивление и мощность резистора, который вам нужно подключить.

Закон Ома из школы: U= R*I,
отсюда R = U/I , где R — сопротивление — измеряется в Омах ,
U — напряжение- измеряется в вольтах (В)
I — ток- измеряется в амперах (А).

Или вот пример, который я нашел в интернете:
Источник питания Vs = 12 в , светодиод — 2,0 в , 20 мА , найти R. Преобразуем миллиамперы в амперы: 20мА = 0.02 А . Теперь посчитаем R , R = 10/0.02 R = 500 Om. Так как на сопротивлении у нас рассеивается 10 вольт ( 12 — 2.0 ), необходимо посчитать мощность сопротивления (чтоб оно не сгорело) Р = U *I, считаем: P = 10*0.02A = 0.2Bт . R = 500 Om , 0.2Bт .
Просто подставьте свои параметры.

Подключение одного светодиода :

При последовательном подключении порядок расчета тот же, только нужно учесть, что падение напряжения на резисторе будет меньше, т.е. от источника питания (Vs) надо отнять суммарное падение напряжения на светодиодах (VL): VL = 3*2 =6В (источник у нас 12В значит 12 — 6 = 6В), подставляем R = 6/0,02 = 300 Ом. Считаем мощность Р = 6*0.02 = 0.12вт. Берём резистор 300 Ом 0.125 вт. от будет обогревателем

При последовательно-параллельном виде подключения расчёт резистора будет таким же, как и для последовательного подключения, следует лишь учесть, что потребление от источника питания увеличится в 3 раза (0.02 + 0.02 + 0.02 = 0.06 А) При подключении светодиода через резистор необходим стабилизированный источник питания, т.к. при изменении напряжения будет меняться ток, проходящий через диод.

Если вдруг вы решите стабилизировать ток, для этого есть простейший стабилизатор LM 317 (ЛМ 317)

Напоминает он транзистор, имеет 3 вывода и поверхность для соединения с радиатором.

В таблице даны значения сопротивления (R1) и выходного тока (Iвых),

R, Om I, mA
3.9 320
1.8 700
1.3 1000

данную схему можно считать простейшим светодиодным драйвером. Следует учитывать, что при токе больше 350 мА микросхему следует ставить на радиатор. К достоинствам данной схемы можно отнести малое количество деталей и простоту изготовления.
Недостатки: низкий КПД, не достаточно защиты. Нужны дополнительные элементы, их нужно на чём-то крепить.

Драйвер светодиода или источник стабилизированного тока для питания светодиодов.
Существует много разных драйверов для светодиодов, что значительно упрощает разработку светотехнических приборов на основе светодиодов для различных целей и выбора компонентов.
Например: AC — DC драйвер работает от переменного входного напряжения. Бывает со входом, рассчитанным на 85 — 280 вольт или 12 — 24 вольта, может иметь в схеме корректор коэффициента мощности (ККМ), фильтры радиопомех, всевозможные защиты, повышающие надёжность и безопасность эксплуатации драйвера, и наличие или отсутствие гальванической развязки выхода и питающей сети. Так как в этих драйверах применяется импульсная схема преобразования входного напряжения, эти драйверы имеют высокий КПД.
Например, там где висит лампа стало жарко или попали солнечные лучи весеннего палящего солнца, радиатор нагрелся сильнее, если у вас есть защита, то она сработает, или драйвер при помощи широтно-импульсной модуляции (ШИМ) изменит частоту мерцания и вы станете её замечать глазом. Появится мерцание, но ничего не сгорит. При понижении температуры все будет работать как и раньше.
Если это БП, светодиоды скорее всего подгорят или выгорит люминофор. Если самый простой источник питания, он от перегрузки может начать сильно греться, если дешевый китайский — может спалить квартиру, так как пластик возможно не термостойкий.
И где экономия?
При работе с драйвером, не имеющим гальванической развязки по питанию, для избежания поражения электрическим током, следует быть особенно внимательным. Мне попадался такой драйвер и меня щипало, долго светились светодиоды при касании к радиатору. Приятного мало.
DC — DC драйвер — работающий от постоянного входного напряжения. Бывают понижающие (buck) и повышающие (boost) но об этом можно почитать отдельно.

Читать еще:  Выключатели освещения для светодиодной ленты

Мы можем использовать драйвер с током большим в два раза от максимального, но при этом подключить светодиоды параллельно, ток при этом будет разделён на количество веток.
Очень важно, расстояние от драйвера до нагрузки должно быть минимальным, толщина провода — с запасом. Так мы сможет сократить потери и продлить срок эксплуатации дорогостоящих компонентов.
Вроде бы всё, если есть вопросы или замечания, давайте их разберём!

Пожалуйста Войти или Регистрация, чтобы присоединиться к беседе.

Светодиоды: устройство, принцип работы, электрические характеристики

Светодиод (англ. light emitting diode, или LED) – это радиоэлектронный прибор, выполненный на основе полупроводника (в большинстве случаев из легированного кремния или германия), принцип действия которого основан на односторонней проводимости с выделением светового излучения.

Устройство светодиода

Как и любой полупроводник, светодиод представляет собой соединение полупроводникового кристалла p – типа (легированного трехвалентным материалом – например In ) с полупроводниковым кристаллом n – типа (легированным пятивалентным материалом – например As), которое образует p – n переход.

Кристалл p – типа обладает свойством «дырочной» проводимости – носителями заряда в таких кристаллах являются положительно заряженные участки ковалентных связей кристалла, которым недостает электронов (Рис.1).


Рисунок 1. Дырочная проводимость полупроводника

Кристалл n – типа обладает электронной проводимостью — носителями заряда в таких кристаллах являются отрицательно заряженные свободные электроны (Рис. 2).


Рисунок 2. Электронная проводимость полупроводника

При соединении кристалла p – типа с кристаллом n – типа в области их контакта образуется p – n переход, который обладает свойством запирающего слоя (рис. 3).
В области места контакта двух полупроводников n-типа и p-типа возникает процесс диффузии: дырки из p-области переходят в n-область, а электроны, наоборот, из n-области в p-область. В результате в n-области в зоне запирающего слоя уменьшается концентрация электронов, что сопровождается возникновением положительно заряженного слоя. В p-области наблюдается уменьшение концентрации дырок и возникает отрицательно заряженный слой. Таким образом, в области контакта полупроводников происходит образование двойного электрического слоя, поле которого препятствует процессу диффузии электронов и дырок навстречу друг другу (рис. 3).


Рисунок 3. Запирающий слой p–n-перехода

В случае соединения np-перехода к внешнему источнику тока так, чтобы положительный его полюс был соединен с p-областью, а отрицательный с n-областью, то показатель напряженности электрического поля в запирающем слое уменьшится и облегчит переход основных носителей тока через контактный слой. В следствии этого, дырки из p-области и электроны из n-области, будут двигаться навстречу друг другу, пересекая np-переход, что приведет к созданию тока в прямом направлении (Рис. 4).


Рисунок 4. Приложение напряжения к p–n-переходу

Так же в месте соприкосновения двух полупроводников (p – n переход), при приложении электричества, происходит рекомбинация электронов с дырками, при этом происходит высвобождение энергии в виде фотонов света (рис. 5).


Рисунок 5. Высвобождение энергии в виде фотонов света

В отличие от обыкновенного диода, светодиод имеет большую площадь соприкосновения в месте контакта двух полупроводников. Благодаря этому площадь рекомбинации больше, а следовательно выше интенсивнее свечение. Однако не каждый p – n переход способен высвобождать энергию в виде фотонов видимого спектра света. Это зависит от ширины запрещенной зоны, энергия преодоления которой должна быть соизмерима с энергией кванта видимого спектра света.

Цвет светодиодного свечения

Спектр цветового свечения светодиодов зависит исключительно от ширины запрещенной зоны p-n-перехода. Именно здесь происходит рекомбинация электронов и «дырок», с высвобождением фотонов света. Таким образом, физически цвет света светодиода зависит от материала полупроводника, и от легирующих его примесей. Чем «синее» свет светодиод, тем выше энергия квантов преодоления запрещенной зоны p-n-перехода, а значит, тем больше должна быть ширина запрещенной зоны. Из этого следует, что изменяя ширину запрещенной зоны p-n-перехода, можно получить свечение любого цвета радуги. А для того, чтобы получить белый цвет, необходимо комбинировать полученные цвета.

Способы получение белого цвета свечения светодиодов

Для получения белого цвета свечения светодиодов применяется три распространенных способа:
1) Смешивание цветов свечения согласно технологии RGB (рис. 6). Метод заключается в том, что на одной подложке плотно размещаются красный, синий и зеленые светодиоды, излучение которых смешивается благодаря оптической системе, например пластиковой линзы. В следствие этого получается белый свет.


Рисунок 6. RGB технология изготовления светодиодов

2) За основу берутся три светодиода, которые излучают ультрафиолетовый свет. Далее на поверхность каждого из светодиодов наносится покрытие из люминофора синего, зеленого и красного цвета. Таким образом, люминофор начинает светиться тремя цветами, а при смешивании этого свечения линзой получается белый цвет.
3) За основу берется синий светодиод, на его поверхность наносится зеленый и красный (может быть желто-зеленый) люминофор. Таким образом, получается белое или близко к белому свечение.


Рисунок 7. Технология изготовления светодиодов с нанесением люминофора

У каждого способа получения белого свечения есть свои достоинства и недостатки.
Так, RGB технология, в дополнение ко всему, позволяет изменять цвет и температуру свечения светодиодов, путем изменяя силы тока на каждом из них. Кроме того, сосредоточенное размещение трех светодиодов в матрице позволяет получить высокий суммарный световой поток и световую мощность. Однако данная система не может обеспечить равномерность свечения всего светового пятна, так как в центре системы будет свечение ярче, чем по краям. Это обусловлено явлением аберрации оптической системы.
Изготовление светодиодов с использованием люминофора гораздо дешевле, чем RGB технология. Однако недостатком этой системы является быстрое старение люминофора (гораздо быстрее, чем кристалла светодиода) и сложность в равномерном нанесении люминофора на поверхность кристалла светодиода.

Электрические характеристики светодиодов

Светодиод – полупроводниковый прибор низковольтного потребления энергии. Диапазон питания обычных индикаторных светодиодов варьирует от 2 до 4 Вольт с потребляемым током до 50 мА. Светодиоды предназначенных для освещения помещений питаются тем же напряжением, однако потребляемый ток таких приборов значительно выше, и может достигать нескольких ампер. Иногда светодиодные модули, состоящие из отдельных светодиодов, включены последовательно, что увеличивает их суммарное напряжение питания.
Но, кроме того, что напряжение питания светодиодов низкое, оно должно быть еще и стабилизированное. Это связано с тем, что напряжение питания светодиода экспоненциально зависит от тока потребления (рис. 8). При небольшом увеличении напряжения, ток потребления увеличивается в разы, что может привести к перегреву прибора и выхода его из строя. Поэтому для стабилизации напряжения питания светодиода используют конвертеры или драйверы (предназначены для стабилизации тока).


Рисунок 8. Вольт-Амперная характеристика светодиодов

Регулировка яркости свечения светодиодов

Очень часто возникает необходимость в изменении яркости свечения светодиода. Данное действие ни в коем случае нельзя выполнять путем снижения напряжения питания светодиода. Это делается с помощью метода широтно-импульсной модуляции (ШИМ). Данный метод заключается в изготовлении устройства, представляющего собой генератор импульсно-модулированного тока с частотой выходного сигнала от сотен до тысяч герц, с возможностью изменения ширины импульсов и пауз между ними. Таким образом, применив данный прибор, средняя яркость питаемого светодиода становится управляемой, в то же время светодиод не гаснет.

Срок службы светодиодов

Срок службы светодиодов зависит в основном от режима их эксплуатации. Если это маломощный диод индикаторного типа, то его срок службы очень велик. Это связано с тем, что протекающий через него ток мал и не разогревает физически спаренный p-n-переход. Мощные же светодиоды рассчитаны на срок службы в 20-50 тысяч часов. Из-за больших токов питания, p-n-переход сильно нагревается, расшатываются атомные решетка кристаллов, разрушая целостность p-n-перехода. Таким образом, старение светодиодов в конечном результате выражается в уменьшении их яркости. Так, если яркость светодиода снижается на 30% от его первоначальной яркости, то его необходимо заменить.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector