Ivalt.ru

И-Вольт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Расчет термической стойкости кабеля по току короткого замыкания

Расчет токов короткого замыкания для начинающих электриков

При проектировании любой энергетической системы специально подготовленные инженеры электрики с помощью технических справочников, таблиц, графиков и компьютерных программ выполняют ее анализ на работу схемы в различных режимах, включая:

2. номинальную нагрузку;

3. аварийные ситуации.

Особую опасность представляет третий случай, когда в сети возникают неисправности, способные повредить оборудование. Чаще всего они связаны с «металлическим» закорачиванием питающей цепи, когда между разными потенциалами подводимого напряжения подключаются случайным образом электрические сопротивления размерностью в доли Ома.

Такие режимы называют токами коротких замыканий или сокращенно «КЗ». Они возникают при:

сбоях в работе автоматики и защит;

ошибках обслуживающего персонала;

повреждениях оборудования из-за технического старения;

стихийных воздействиях природных явлений;

диверсиях или действиях вандалов.

Токи коротких замыканий по своей величине значительно превышают номинальные нагрузки, под которые создается электрическая схема. Поэтому они просто выжигают слабые места в оборудовании, разрушают его, вызывают пожары.

Кроме термического разрушения они еще обладают динамическим действием. Его проявление хорошо показывает видеоролик:

Чтобы при эксплуатации исключить развитие подобных аварий с ними начинают бороться еще на стадии создания проекта электрического оборудования. Для этого теоретически вычисляют возможности возникновения токов коротких замыканий и их величины.

Эти данные используются для дальнейшего создания проекта и выбора силовых элементов и защитных устройств схемы. С ними же продолжают постоянно работать и при эксплуатации оборудования.

Токи возможных коротких замыканий рассчитывают теоретическими методами с разной степенью точности, допустимой для надежного создания защит.

Какие электрические процессы заложены в основу расчета токов короткого замыкания

Первоначально заострим внимание на том, что любой вид приложенного напряжения, включая постоянное, переменное синусоидальное, импульсное или любое другое случайное создает токи аварий, которые повторяют образ этой формы или изменяют ее в зависимости от приложенного сопротивления и действия побочных факторов. Все это приходится предусматривать проектировщикам и учитывать в своих расчетах.

Оценку возникновения м действия токов коротких замыканий позволяют выполнить:

величина силовой характеристики мощности, приложенной от источника напряжения;

структура используемой электрической схемы электроустановки;

значение полного приложенного сопротивления к источнику.

Действие закона Ома

За основу расчета коротких замыканий взят принцип, определяющий, что силу тока можно вычислить по величине приложенного напряжения, если поделить ее на значение подключенного сопротивления.

Он же действует и при расчете номинальных нагрузок. Разница лишь в том, что:

во время оптимальной работы электрической схемы напряжение и сопротивление практически стабилизированы и изменяются незначительно в пределах рабочих технических нормативов;

при авариях процесс происходит стихийно случайным образом. Но его можно предусмотреть, просчитать разработанными методиками.

Мощность источника напряжения

С ее помощью оценивают силовую энергетическую возможность совершения разрушительной работы токами коротких замыканий, анализируют длительность их протекания, величину.

Рассмотрим пример, когда один и тот же кусок медного провода сечением полтора квадратных мм и длиной в полметра вначале подключили напрямую на клеммы батарейки «Крона», а через некоторое время вставили в контакты фазы и нуля бытовой розетки.

В первом случае через провод и источник напряжения потечет ток короткого замыкания, который разогреет батарейку до такого состояния, что повредит ее работоспособность. Мощности источника не хватит на то, чтобы сжечь подключенную перемычку и разорвать цепь.

Во втором случае сработают автоматические защиты. Допустим, что они все неисправны и заклинили. Тогда ток короткого замыкания пройдет через домашнюю проводку, достигнет вводного щитка в квартиру, подъезд, здание и по кабельной или воздушной линии электропередач дойдет до питающей трансформаторной подстанции.

В итоге к обмотке трансформатора подключается довольно протяженная цепь с большим количеством проводов, кабелей и мест их соединения. Они значительно увеличат электрическое сопротивление нашей закоротки. Но даже в этом случае высока вероятность того, что она не выдержит приложенной мощности и просто сгорит.

Конфигурация электрической схемы

При питании потребителей к ним подводится напряжение разными способами, например:

через потенциалы плюсового и минусового выводов источника постоянного напряжения;

фазой и нулем однофазной бытовой сети 220 вольт;

трехфазной схемой 0,4 кВ.

В каждом из этих случаев могут произойти нарушения изоляции в различных местах, что приведет к протеканию через них токов короткого замыкания. Только для трехфазной цепи переменного тока возможны короткие замыкания между:

всеми тремя фазами одновременно — называется трехфазным;

двумя любыми фазами между собой — междуфазное;

любой фазой и нулем — однофазное;

фазой и землей — однофазное на землю;

двумя фазами и землей — двухфазное на землю;

тремя фазами и землей — трехфазное на землю.

При создании проекта электроснабжения оборудования все эти режимы требуется просчитать и учесть.

Влияние электрического сопротивления цепи

Протяженность магистрали от источника напряжения до места образования короткого замыкания имеет определенное электрическое сопротивление. Его величина ограничивает токи короткого замыкания. Наличие обмоток трансформаторов, дросселей, катушек, обкладок конденсаторов добавляют индуктивные и емкостные сопротивления, формирующие апериодические составляющие, искажающие симметричную форму основных гармоник.

Существующие методики расчета токов короткого замыкания позволяют их вычислить с достаточной для практики точностью по заранее подготовленной информации. Реальное электрическое сопротивление уже собранной схемы можно измерить по методике петли «фаза-ноль». Оно позволяет уточнить расчет, внести коррективы в выбор защит.

Основные документы по расчету токов коротких замыканий

1. Методика выполнения расчета токов КЗ

Она хорошо изложена в книге А. В. Беляева “Выбор аппаратуры, защит и кабелей в сетях 0,4 кВ”, выпущенной Энергоатомиздат в 1988 году. Информация занимает 171 страницу.

последовательность расчета токов КЗ;

учет токоограничивающего действия электрической дуги на месте образования повреждения;

принципы выбора защитной аппаратуры по значениям рассчитанных токов.

В книге публикуется справочная информация по:

автоматическим выключателям и предохранителям с анализом характеристик их защитных свойств;

выбору кабелей и аппаратуры, включая установки защиты электродвигателей, силовых сборок, вводных устройств генераторов и трансформаторов;

недостаткам защит отдельных видов автоматических выключателей;

особенностям применения выносных релейных защит;

примерам решения проектных задач.

2. Руководящие указания РД 153—34.0—20.527—98

Этот документ определяет:

методики расчетов токов КЗ симметричных и несимметричных режимов в электроустановках с напряжением до и выше 1 кВ;

способы проверок электрических аппаратов и проводников на термическую и электродинамическую стойкость;

методы испытания коммутационной способности электрических аппаратов.

Указания не охватывают вопросы расчета токов КЗ применительно к устройствам РЗА со специфическими условиями эксплуатации.

3. ГОСТ 28249-93

Документ описывает короткие замыкания, возникающие в электроустановках переменного тока и методику их расчета для систем с напряжением до 1 кВ. Он действует с 1 января 1995 года на территориях Беларуси, Кыргызстана. Молдовы, России, Таджикистана, Туркменистана и Украины.

Государственный стандарт определяет общие методы расчетов токов КЗ в начальный и любой произвольный временной момент для электроустановок с синхронными и асинхронными машинами, реакторами и трансформаторами, воздушными и кабельными ЛЭП, шинопроводами, узлами сложной комплексной нагрузки.

Технические нормативы проектирования электроустановок определены действующими государственными стандартами и согласованы Межгосударственным Советом по вопросам стандартизации, метрологии, сертификации.

Скачать ГОСТ 28249-93 (2003). Короткие замыкания в электроустановках. Методы расчета в электроустановках переменного тока напряжением до 1 кВ можно здесь: ГОСТ по расчету токов КЗ

Очередность действий проектировщика для расчета токов короткого замыкания

Первоначально следует подготовить необходимые для анализа сведения, а затем провести из расчет. После монтажа оборудования к процессе ввода его в работу и при эксплуатации проверяется правильность выбора и работоспособность защит.

Сбор исходных данных

Любую схему можно привести к упрощенному виду, когда она состоит из двух частей:

1. источника напряжения. Для сети 0,4 кВ его роль исполняет вторичная обмотка силового трансформатора;

2. питающей линии электропередачи.

Под них собираются необходимые характеристики.

Данные трансформатора для расчета токов КЗ

величину напряжения короткого замыкания (%) — Uкз;

потери короткого замыкания (кВт) — Рк;

номинальные напряжения на обмотках высокой и низкой стороны (кВ. В) — Uвн, Uнн;

фазное напряжение на обмотке низкой стороны (В) — Еф;

номинальную мощность (кВА) — Sнт;

полное сопротивление током однофазного КЗ (мОм) — Zт.

Данные питающей линии для расчета токов КЗ

К ним относятся:

марки и количество кабелей с указанием материала и сечения жил;

Читать еще:  Кабели постоянного тока прокладка

общая протяженность трассы (м) — L;

индуктивное сопротивление (мОм/м) — X0;

полное сопротивление для петли фаза-ноль (мОм/м) — Zпт.

Эти сведения для трансформатора и линии сосредоточены в справочниках. Там же берут ударный коэффициент Куд.

Последовательность расчета

По найденным характеристикам вычисляют для:

трансформатора — активное и индуктивное сопротивление (мОм) — Rт, Хт;

линии — активное, индуктивное и полное сопротивление (мОм).

Эти данные позволяют рассчитать общее активное и индуктивное сопротивление (мОм). А на их основе можно определить полное сопротивление схемы (мОм) и токи:

трехфазного замыкания и ударный (кА);

однофазного КЗ (кА).

По величинам последних вычисленных токов и подбирают автоматические выключатели и другие защитные устройства для потребителей.

Расчет токов короткого замыкания проектировщики могут выполнять вручную по формулам, справочным таблицам и графикам или с помощью специальных компьютерных программ.

На реальном энергетическом оборудовании, введенном в эксплуатацию, все токи, включая номинальные и коротких замыканий, записываются автоматическими осциллографами.

Такие осциллограммы позволяют анализировать ход протекания аварийных режимов, правильность работы силового оборудования и защитных устройств. По ним принимают действенные меры для повышения надежности работы потребителей электрической схемы.

Методика расчета токов КЗ на стороне 10кВ

1 Определяется значение рабочего тока по формуле:

где: IР — рабочий ток, А;

SH — установленная полная мощность трансформаторной подстанции, кВА;

UHOM — номинальное напряжение сети, кВ (UHOM.=10,5кВ).

2 На основании расчета, по длительно допустимому току выбирается марка кабеля с необходимым сечением жилы.

3 Рассчитывается ток короткого замыкания на стороне 10,5кВ. Для определения токов короткого замыкания необходимо, из расчетной схемы, рисунок 3, составить схему замещения, в которой все элементы цепи заменены сопротивлениями, рисунок 4, и определить точки КЗ.

Рис. 3 Расчетная схема

Рис. 4 Схема замещения

3 Индуктивное сопротивление трансформатора выбирается из раздела Расчёт токов короткого замыкания на стороне 0,4 кВ.

4 Расчитываеся активное сопротивление вводного кабеля по формуле:

где: R — удельное индуктивное сопротивление кабеля, Ом/км;

L — протяженность кабельной линии ввода L, км.

5 Расчитываеся индуктивное сопротивление вводного кабеля по формуле:

где: X — удельное индуктивное сопротивление кабеля, Ом/км;

L — протяженность кабельной линии ввода L, км.

6 Рассчитывается общее полное сопротивление ввода:

где: RК — активное сопротивление кабеля, Ом;

RР — активное сопротивление контактов разъединителя, Ом (RР=0,003Ом);

RВ — активное сопротивление контактов выключателя, Ом (RР=0,005Ом);

XК — индуктивное сопротивление кабеля, Ом;

XТР — индуктивное сопротивление кабеля, Ом.

7 Определение тока короткого замыкания:

где: UНОМ — номинальное напряжение сети, В (UНОМ=10,5кВ);

8 Определение ударного тока короткого замыкания. При определении ударного тока учитывается ударный коэффициент, зависящий от постоянной времени контура короткого замыкания или от коэффициента реактивной мощности контура короткого замыкания.

Расчет производится по формуле:

где: kУ — ударный коэффициент (kУ=1,02);

9 Определение условия термической стойкости. Термической стойкостью электрических аппаратов называется способность их выдерживать без повреждений, препятствующих дальнейшей работе, термическое воздействие протекающих по токоведущим частям токов заданной длительности.

Количественной характеристикой термической стойкости является ток термической стойкости, протекающий в течение определённого промежутка времени.

Наиболее напряжённым является режим короткого замыкания, в процессе которого токи по сравнению с номинальными могут возрастать в десятки раз, а мощности источников теплоты – в сотни раз.

Термическая стойкость электрического аппарата зависит при этом не только от режима короткого замыкания, но и от теплового состояния, предшествующего режиму короткого замыкания.

Рассчитывается тепловой коэффициент воздействия по формуле:

где: ВК — тепловой коэффициент воздействия, кА 2 с;

τ – время воздействия, с (принимаем τ=1с).

10 Исходя из проведенных расчетов производится выбор высоковольтного оборудования. Результаты выбора сводятся в таблицу 6.

Таблица 6 Выбор оборудования на стороне 10кВ

Выбор кабеля

При выполнении этого раздела проекта необходимо: выбрать марку кабеля, определить его длину и сечение силовых жил.

Марка кабеля определяется областью его применения, которая для кабелей, прокладываемых на поверхности шахт регламентирована «Правилами устройства электроустановок» (ПУЭ), а в шахте — ПБ.

Для передачи и распределения электроэнергии в шахте применяют следующие кабели:

· при прокладке по стволам, крутонаклонным (до 45º) и капитальным выработкам — бронированные экранированные с проволочной броней;

· при прокладке в горизонтальных и наклонных выработках (до 45º) — бронированные экранированные с ленточной броней;

· для присоединения КТП — бронированные экранированные повышенной гибкости;

· для присоединения РПП низшего напряжения — бронированные экранированные повышенной гибкости или гибкие экранированные;

· для присоединения передвижных машин — гибкие экранированные;

· для участков линии между ручным электросверлом и соединителем напряжения — особо гибкие экранированные;

· для присоединения выемочных машин на крутых пластах с применением кабелеподборщиков — гибкие экранированные повышенной прочности.

Характеристика кабелей, допущенных МакНИИ к применению в шахтах, приведена в Приложении 10.

При определении длины кабелей необходимо учитывать запас на провисание для бронированных кабелей (Lбр) — 5%, для гибких (Lг) — 10%:

,

,

где Σ Lвыр. — суммарная длина выработок, по которым проложен кабель, м.

Сечение силовых жил кабеля выбирают: по длительно допустимому току нагрузки; механической прочности, экономической плотности тока и термической стойкости.

Сечение кабеля по длительно допустимому току нагрузки (Iдл, А) выбирают по условию:

, (4.16)

где Кп — поправочный коэффициент на температуру окружающей среды, определяемый в соответствии с ПУЭ (Приложение 11);

Iр. — расчетный ток нагрузки кабеля.

Расчетный ток нагрузки принимают по следующим условиям:

— кабелей, прокладываемых по стволу (Iр.ст.), таким, чтобы при повреждении одного кабеля остальные могли пропустить 100% нагрузки;

— кабелей для питания КТП:

, если , (4.17)

Iр.КТП = Iн. вн , если , (4.18)

где Iф. нн , Iн. вн — соответственно фактический ток обмотки низшего напряжения и номинальный ток обмотки высшего напряжения, А;

Кт — коэффициент трансформации силового трансформатора;

— кабелей для питания отдельного потребителя:

, (4.19)

где ∑Iн. i. — сумма номинальных токов электроприемников присоединенных к кабелю. Для двигателей принимают номинальный ток соответствующий режиму его работы (S1, S2, S4). При применении кабелеподборщиков с многослойной навивкой нагрузка на кабель должна быть снижена на 30% по сравнению с длительно допустимой;

, (4.20)

где Sp — полная расчетная мощность, передаваемая по магистральному кабелю, определяется по формулам (4.1, 4.13), кВА;

Uн — номинальное напряжение, В.

При больших токах нагрузки, когда максимально возможное сечение кабеля не соответствует по нагреву рабочим током или по условиям подключения во вводные устройства электрооборудования, можно принимать два параллельно включенных кабеля или перераспределить нагрузку таким образом, чтобы принятый кабель соответствовал указанным условиям.

В первом случае суммарное сечение кабелей определяют по условию:

, (4.21)

Во втором случае необходимо определить полную мощность, передаваемую по кабелю по соответствующим формулам (4.1, 4.3, 4.5, 4.13), а расчетный ток по формуле (4.20).

По механической прочности рекомендуется принимать следующие минимальные сечения кабелей:

— высокого напряжения — 16мм 2 ;

— магистральных низкого напряжения — 35 мм 2 ;

— очистных и проходческих комбайнов — 25 мм 2 ;

— отдельно установленных, периодически перемещаемых машин — 16 мм 2 ;

— машин, аппаратов, установленных в откаточных выработках — 10 мм 2 ;

— машин и аппаратов малой мощности в соответствии с диаметром кабельного ввода.

По экономической плотности тока (в соответствии с ПУЭ) выбирают кабели со сроком службы более 5 лет (стволовые, для РПП-6). Это сечение зависит от годового числа часов использования максимума нагрузки, материала жил и изоляции кабеля и определяется по формуле:

, (4.22)

где jэк. — экономическая плотность тока, А/мм 2 [1]. Приложение 12.

При этом принимают ближайшее большее стандартное сечение.

Проверку сечения жил кабелей по термической стойкости можно проводить по табличным данным или аналитически. По табличным данным определяют предельно допустимый кратковременный ток (Iп, А) величина которого должна быть больше тока трехфазного короткого замыкания (I (3) к.з., А) в начале кабеля, то есть:

.

Предельный ток для принятого сечения кабеля определяется длительно допустимой температурой нагрева изоляции кабеля и приведенным временем отключения, определяемого типом защитного аппарата [1]. Приложение 13.

Сечение жил кабеля по термической стойкости может быть определено также по формуле:

,

где I (3) к.з. — ток трехфазного короткого замыкания в начале кабеля;

Читать еще:  Клещи переменного тока подсветка

tп — приведенное время отключения (Приложение 13.1);

Kbt — коэффициент, учитывающий предварительную нагрузку кабеля и температуру окружающей среды [1];

С — коэффициент, учитывающий конечную температуру нагрева жил при коротком замыкании и напряжение кабеля [1]. Приложение 14.

Проверку сечения жил кабеля по термической стойкости выполняют после расчета токов трехфазного короткого замыкания.

В пояснительной записке подробный расчет и выбор проводят: в высоковольтной сети только стволовых кабелей, а в низковольтной — одного магистрального и одного для питания электродвигателя. Данные о выборе остальных кабелей приводят в таблице 5 «Ведомость кабелей».

Окончательно выбранное сечение силовой жилы кабеля определяется как наибольшее стандартное из рассчитанных по различным критериям.

Проверка электрических аппаратов и проводников на термическую стойкость при коротких замыканиях

Проверка электрических аппаратов и проводников на термическую стойкость при коротких замыканиях

Вопрос. Как производится проверка коммутационных электрических аппаратов на термическую стойкость при КЗ?

Ответ. Производится путем сравнения значения интеграла Джоуля, найденного при расчетных условиях КЗ, с его допустимым значением, которое зависит от указанного в технической документации изготовителя нормируемого тока термической стойкости и от соотношения между расчетной продолжительностью КЗ и предельно допустимым (нормируемым) временем воздействия нормированного тока термической стойкости (1.4.20).

Вопрос. При каких условиях обеспечивается термическая стойкость кабелей и проводников при КЗ?

Ответ. Обеспечивается, если температура их нагрева к моменту отключения КЗ не превышает следующих предельных по условию термической стойкости значений, °С:

Вопрос. Как производится проверка кабелей на термическую стойкость в тех случаях, когда для этих кабелей известны значения односекундного тока термической стойкости (допустимого односекундного тока КЗ) I тер. доп 1?

Ответ. Производится путем сравнения интеграла Джоуля В к с квадратом односекундного тока термической стойкости. Термическая стойкость кабеля обеспечивается, если выполняется условие:

Значения односекундного тока термической стойкости приведены в таблицах настоящей главы Правил (1.4.22).

Вопрос. Как рассматриваются расщепленные провода ВЛ при проверке на термическую стойкость при КЗ?

Ответ. Рассматриваются как провод суммарного сечения (1.4.24).

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Читайте также

Глава 7. Завидная стойкость

Глава 7. Завидная стойкость В 1991 г. вышел отчёт «Причины и обстоятельства аварии на 4 блоке Чернобыльской АЭС. Меры по повышению безопасности АЭС с реакторами РБМК» за подписями директора ИАЭ Е. П. Велихова, генерального директора НПО «Энергия» (ВНИИАЭС) А. А. Абагяна,

Глава 1.3. ВЫБОР ЭЛЕКТРИЧЕСКИХ АППАРАТОВ И ПРОВОДНИКОВ

Глава 1.3. ВЫБОР ЭЛЕКТРИЧЕСКИХ АППАРАТОВ И ПРОВОДНИКОВ Область применения, общие требования Вопрос. На какие электрические аппараты и проводники распространяется настоящая глава Правил?Ответ. Распространяется на методы выбора электрических аппаратов и проводников

Выбор электрических аппаратов по условиям продолжительности режимов и сечений проводников по нагреву в этих режимах

Выбор электрических аппаратов по условиям продолжительности режимов и сечений проводников по нагреву в этих режимах Вопрос. По каким параметрам выбираются все электрические аппараты?Ответ. Выбираются по номинальному напряжению и номинальному току. При этом

Выбор сечения проводников по плотности тока

Выбор сечения проводников по плотности тока Вопрос. Из какого соотношения определяется целесообразное сечение S, мм2, проводников электроустановок напряжением до 500 кВ?Ответ. Определяется из соотношенияS = I / Jэкн,где I – расчетный ток в часы максимума нагрузки

Проверка проводников по условиям короны и радиопомех

Проверка проводников по условиям короны и радиопомех Вопрос. В каких случаях проводники проверяются по условиям образования короны?Ответ. Проверяются при напряжениях 35 кВ и выше с учетом среднегодовых значений плотности и температуры воздуха на высоте расположения

Глава 1.4. ПРОВЕРКА ЭЛЕКТРИЧЕСКИХ АППАРАТОВ И ПРОВОДНИКОВ ПО УСЛОВИЯМ КОРОТКОГО ЗАМЫКАНИЯ

Глава 1.4. ПРОВЕРКА ЭЛЕКТРИЧЕСКИХ АППАРАТОВ И ПРОВОДНИКОВ ПО УСЛОВИЯМ КОРОТКОГО ЗАМЫКАНИЯ Область применения Вопрос. На какие методы проверки электрических аппаратов и проводников распространяется настоящая глава Правил?Ответ. Распространяется на методы проверки

Расчет токов короткого замыкания для проверки электрических аппаратов и проводников по условиям короткого замыкания

Расчет токов короткого замыкания для проверки электрических аппаратов и проводников по условиям короткого замыкания Вопрос. Какие условия принимаются при составлении расчетной схемы электроустановок напряжением до и выше 1 кВ и расчете токов КЗ с целью проверки

Проверка электрических аппаратов, изоляторов, проводников и несущих конструкций на электродинамическую стойкость при коротких замыканиях

Проверка электрических аппаратов, изоляторов, проводников и несущих конструкций на электродинамическую стойкость при коротких замыканиях Вопрос. Как проверяются на действие тока КЗ элементы цепи, защищенные плавкими предохранителями или автоматическими

Проверка электрических аппаратов на коммутационную способность при коротких замыканиях

Проверка электрических аппаратов на коммутационную способность при коротких замыканиях Вопрос. Исходя из каких нормированных показателей проверяются коммутационные электрические аппараты для отключения цепей при КЗ?Ответ. Проверяются исходя из нормированных

Проверка кабелей на невозгораемость при коротких замыканиях

Проверка кабелей на невозгораемость при коротких замыканиях Вопрос. Какая точка в качестве расчетной принимается при проверке кабелей на невозгораемость при КЗ?Ответ. Принимается точка, находящаяся:для одиночных кабелей, имеющих одинаковое сечение по длине, – в начале

Соединения и присоединения заземляющих, защитных проводников и проводников системы уравнивания и выравнивания потенциалов

Соединения и присоединения заземляющих, защитных проводников и проводников системы уравнивания и выравнивания потенциалов Вопрос. Какие требования предъявляются к исполнению соединения и присоединения заземляющих, защитных проводников и проводников системы

1.3. Выбор электрических аппаратов и проводников

1.3. Выбор электрических аппаратов и проводников Область применения, общие требованияВопрос 57. В чем состоит выбор электрических аппаратов по условиям продолжительных режимов?Ответ. Состоит в подборе их номинального напряжения по уровню изоляции и номинального тока по

1.4. Проверка электрических аппаратов и проводников по условиям короткого замыкания

1.4. Проверка электрических аппаратов и проводников по условиям короткого замыкания Область применения, определенияВопрос 74. Какие электрические аппараты и проводники считаются стойкими при КЗ?Ответ. Считаются такие, которые при расчетных условиях КЗ выдерживают

5.2. Коррозионная стойкость

5.2. Коррозионная стойкость Это способность металла сопротивляться разрушению под химическим воздействием окружающей среды.Чисто химическая коррозия определяется главным образом окислением, электрохимическая коррозия возникает из-за физико-химической неоднородности

4.2. Стойкость стегосистем к обнаружению факта передачи скрываемых сообщений

4.2. Стойкость стегосистем к обнаружению факта передачи скрываемых сообщений Для анализа стойкости стеганографических систем к обнаружению факта передачи скрываемых сообщений рассмотрим теоретико-информационную модель стегосистемы с пассивным нарушителем,

4.3. Стойкость недетерминированных стегосистем

4.3. Стойкость недетерминированных стегосистем В предыдущем параграфе было показано, что на основе анализа распределений контейнеров и распределений стего выявляется факт использования стегосистемы. Для этого в рассмотренной теоретико-информационной модели

Выбор кабеля по термической стойкости

Выбор проводников по устойчивости к току к.з.

Выбор проводников по термической и динамической устойчивости к току к.з.

Проводники и токопроводы в электрических сетях выше 1000 в, как правило, подлежат проверке на условия нагревания током к. з.
В электрических сетях до 1000 в на термическую устойчивость проверяются только токопроводы.
Повышение температуры жил изолированных проводников и кабелей в результате прохождения тока к. з. ведет к химическому разложению изоляции и резкому снижению ее электрической и механической прочности, а следовательно, и к возможности аварии. Поэтому установлены определенные максимально допустимые пределы температур в режиме к. з., указанные в табл. 6-1.

Проверка кабелей на нагревание от токов к. з. должна производиться:
1)для одиночных кабелей небольшой протяженности, исходя из к. з. в начале кабеля;
2)для одиночных кабелей, имеющих соединительные муфты, исходя из к. з. s начале каждого участка, с тем чтобы иметь возможность ступенями уменьшать сечение кабеля по его длине;
3)для двух и более параллельно включенных кабелей, исходя из к. з. непосредственно за пучком Читайте также: Вкусно запечь овощи в духовке кусочками

Таблица 6-1 Допустимые температуры нагревания проводников и шин при к. з.

11 Проверка кабеля 10 кВ на термическую устойчивость

к токам короткого замыкания

При проверке кабелей ПУЭ рекомендует для одиночных кабелей место короткого замыкания принимать в начале линии, если она выполняется одним сечением или в начале каждого участка нового сечения, если линия имеет по длине разные сечения. При наличии пучка из двух и более параллельно выполненных кабелей ток короткого замыкания определяют, исходя из того, что замыкание произошло непосредственно за пучком, т.е. учитывается сквозной ток короткого замыкания.

Читать еще:  Кабель для подключения трансформатора тока

Проверка сечения кабелей по термической стойкости производится по формуле:

(11.1)

где I∞ — действующее значение установившегося тока короткого замыкания;

tn – приведенное время короткого замыкания;

С – расчетный коэффициент.

С=95 А*с 1/2 /мм 2 /7/

При проверке кабелей 10 кВ городских сетей на термическую стойкость затухание тока короткого замыкания, как правило, не учитывается и tn принимается равным действительному, которое слагается из выдержки времени релейной защиты линий 10 кВ и собственного времени отключающего аппарат.

При проверке кабелей 10 кВ городских сетей на термическую стойкость затухание тока короткого замыкания, как правило, не учитывается и tn принимается равным действительному, которое слагается из выдержки времени релейной защиты линий 10 кВ и собственного времени отключающего аппарат. /8/

Проверяем выбранное сечение кабеля на участке п/ст «Шелковая» — РП с ТП-2 по термической устойчивости:

Расчетная точка короткого замыкания – К1.

I∞=8530 А; tр.з=0,1 с.; tn=0,13 с.

95 мм 2 >32,4 мм 2

Выбранный кабель удовлетворяет условию проверки по термической устойчивости.

Проверим сечения кабелей кольцевой схемы, вариант I.

Проверяем сечение кабеля на участке РП – ТП-1, расчетная точка короткого замыкания – К1.

I∞=8530 А; tр.з=0,05 с.; tn=0,08 с.

50 мм 2 >25,4 мм 2

Выбранный кабель удовлетворяет условию проверки по термической устойчивости.

Проверяем сечение кабеля на участке ТП-1 – ТП-4, расчетная точка короткого замыкания – К2.

I∞=8250 А; tр.з=0,05 с.; tn=0,08 с.

35 мм 2 >24,6 мм 2

Выбранный кабель удовлетворяет условию проверки по термической устойчивости.

Проверяем сечение кабеля на участке ТП-3 – ТП-6, расчетная точка короткого замыкания – К6.

I∞=8150 А; tр.з=0,05 с.; tn=0,08 с.

35 мм 2 >24,3 мм 2

Выбранный кабель удовлетворяет условию проверки по термической устойчивости.

Двухлучевая схема. Вариант II.

Проверяем сечение кабеля на участке РП – ТП-1, расчетная точка короткого замыкания – К1.

I∞=8530 А; tр.з=0,05 с.; tn=0,08 с.

35 мм 2 >25,4 мм 2

Выбранный кабель удовлетворяет условию проверки по термической устойчивости.

12 Выбор и расчет оборудования сети 10 кВ

В данном разделе мною рассмотрены вопросы по выбору электрооборудования в ячейках РП-10 кВ, РЦ 10 кВ на трансформаторных подстанциях и в ячейках питающих линий 10 кВ на п/ст «Шелковая».

В проектируемом жилом микрорайоне распределительный пункт совмещен с трансформаторной подстанцией, с трансформаторами на 250 кВА.

Распределительный пункт 10 кВ предназначен для приема и распределения электрической энергии в городских сетях 10 кВ и размещается в отдельно стоящем здании. Выбираем распределительный пункт типа II РПК-2Т на восемь отходящих линий /9/. Силовые трансформаторы, распределительный щит 0,4 кВ и РУ 10 кВ размещаются в отдельных помещениях.

РУ 10 кВ комплектуется камерами КСО-212, распределительное устройство 0,4 кВ – панелями серии ЩО-70 /14/. Соединение трансформаторов со щитом 0,4 кВ осуществляется голыми шинами, с РУ 10 кВ – кабелем. Крепление металлоконструкций (камер, щитов, панелей) осуществляется сварным соединением к закладным металлическим деталям в стенах и полу, предусмотренных в строительной части проекта.

Панель собственных нужд размещается вместе со щитом освещения и электроотопления, навесного исполнения в помещении РУ 0,4 кВ. Снаружи
РУ 0,4 кВ предусмотрено место для панели внутриквартального освещения. Для автоматического регулирования уличного освещения в ночное время устанавливается щит уличного освещения ЩУО-200, который комплектуется вводным аппаратом на 100 А, трансформатором тока и счетчиком, четырьмя групповыми автоматами на 25 и 40 А.

Выбор кабелей 10 кВ немного отличается от выбора кабелей 0,4 кВ. Здесь есть некоторые особенности, о которых нужно знать. Также хочу представить свою очередную вспомогательную программу, с которой выбор сечения кабелей 10 кВ станет проще.

Еще в далеком 2012 г у меня была статья: Как правильно выбрать сечение кабеля напряжением 6 (10) кВ? На тот момент я не владел теми знаниями, которые есть у меня сейчас, поэтому данная статья является дополнением.

Задача: выбрать кабель для питания трансформаторной подстанции 250 кВА. Расстояние от точки питания (РУ-10кВ, ТП проходного типа) до проектируемой КТП – 200 м. Объект в городской черте.

Первое, с чем необходимо определиться: тип кабеля.

Я решил применить кабель с изоляцией из сшитого полиэтилена.

Полезная информация из каталога:

Кабели марок ПвП, АПвП, ПвПу, АПвПу, ПвБП, АПвБП, в том числе с индексами «г», «2г», «гж» и «2гж» предназначены для эксплуатации при прокладке в земле независимо от степени коррозионной активности грунтов. Допускается прокладка этих кабелей на воздухе, в том числе в кабельных сооружениях, при условии обеспечения дополнительных мер противопожарной защиты, например, нанесения огнезащитных покрытий.

Прокладка одножильного кабеля в стальной трубе не допускается.

Кабели указанных марок с индексами «г», «2г», «гж» и «2гж» предназначены для прокладки в земле, а также в воде (в несудоходных водоемах) — при соблюдении мер, исключающих механические повреждения кабеля.

Кабели марок ПвПу, АПвПу, ПвБП, АПвБП, в том числе с индексами «г», «2г», «гж» и «2гж» предназначены для прокладки на сложных участках кабельных трасс, содержащих более 4 поворотов под углом свыше 30 градусов или прямолинейные участки с более чем 4 переходами в трубах длиной свыше 20 м или с более чем 2 трубными переходами длиной свыше 40 м.

Кабели марок ПвВ, АПвВ, ПвВнг-LS, АПвВнг-LS, ПвБВ, АПвБВ, ПвБВнг-LS, АПвБВнг-LS могут быть проложены в сухих грунтах (песок, песчано-глинистая и нормальная почва с влажностью менее 14%).

Кабели марок ПвВнг-LS, ПвБВнг-LS могут быть использованы для прокладки во взрывоопасных зонах классов В-I, B-Ia; кабели марок АПвВнг-LS,

АПвБВнг-LS – во взрывоопасных зонах В-Iб, В-Iг, B-II, B-IIa.

Кабели предназначены для прокладки на трассах без ограничения разности уровней.

Исходя из рекомендаций, выбор мой остановился на АПвБП. В этой статье не буду рассматривать стоимость различных марок кабелей.

Далее нам необходимо определиться с сечением кабеля.

Сечение кабеля 6 (10) кВ выбирают на основании расчетного тока линии, длины линии, тока трехфазного КЗ на шинах питания, времени срабатывания защиты, материала изоляции и жилы кабеля.

Основные проверки, которые нужно выполнить при выборе сечения кабеля 6 (10) кВ:

1 Проверка кабеля по длительно допустимому току.

2 Проверка кабеля по экономической плотности тока.

3 Проверка кабеля по термической устойчивости току трехфазного КЗ.

4 Проверка по потере напряжения (актуально для больших длин).

5 Проверка экрана кабеля на устойчивость току двухфазного КЗ (при наличии).

Для упрощения выбора сечения кабеля я сделал программу: расчет сечения кабеля 6 (10) кВ.

Внешний вид программы:

Программа для расчета сечения кабеля 6 (10)кВ

Более подробно о программе и выборе сечения кабеля смотрите в видео:

Выбор сечения кабеля:

Изначально выбираем кабель по расчетному току: АПвБП- (3×35) 16. Расчетный ток в нашем примере всего около 15 А. По экономической плотности тока выходит и вовсе 10 мм2.

При проверке кабеля на термическую устойчивость минимальное сечение получается 29 мм2. Здесь стоит отметь, ток трехфазного КЗ я принял 10 кА, т.к. сейчас в отпуске и нет возможности запросить данное значение в РЭСе, а в ТУ не указано. Согласно ТУ необходимо предусмотреть КСО с выключателем нагрузки (для установки в подключаемой ТП). Выключатель нагрузки я применил с предохранителями типа ПКТ на 40 А.

Согласно время-токовой характеристике предохранителя ПКТ, время отключения составит не более 0,01 с. Я решил перестраховаться и принял время 0,1 с.

Для расчета потери напряжения можно использовать программу: расчет потери напряжения в трехфазных сетях с учетом индуктивного сопротивления. В моем случае нет смысла проверять кабель на потери напряжения.

Экран выбранного кабеля способен выдержать ток двухфазного КЗ.

На основании всех расчетов и с учетом того, что ток трехфазного КЗ мне пришлось принять самому я решил подстраховаться и выбираю кабель АПвБП- (3×50) 16, за что от вас получу справедливую критику Попытаюсь запросить дополнительную информацию в РЭСе и сделаю новый расчет, который с этой программой займет пару минут.

На подготовку данного материала у меня ушло около двух дней. Но, с этими знаниями вы сможете сделать подобную программу значительно быстрее.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector