Ivalt.ru

И-Вольт
4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Кабели за постоянен ток

Кабели за постоянен ток

При схожести конструкции подход к измерениям и поиску повреждений силовых кабелей сильно отличается от тех же работ с кабелями связными. Обусловлено это тем, что силовые кабели способны провести большой ток и распределительные устройства этот ток ограничивают не мгновенно. То есть в случае пробоя кабельной линии произойдёт не тихое умирание системы, а взрыв с дополнительными повреждениями. Способность проводить приличный ток даёт возможность использовать более простые и наглядные способы поиска места пробоя.

Высоковольтные испытания

Кабельная линия, включающаяся в электрическую сеть, должна быть испытана повышенным напряжением постоянного тока. Низковольтные кабели (до 1000 В) испытываются мегаомметром с напряжением 2500 В. Для высоковольтных (выше 1000 в) всё сложнее – испытательное напряжение зависит от вида изоляции кабеля и номинального напряжения кабельной линии.

Нормы на испытательные напряжения отражены в ПУЭ и прочих нормативных документах. Протоколы на эти испытания содержат ссылки на пункты нормативных документов, величину испытательного напряжения и токи утечки, сопротивление изоляции.

Причина такого серьёзного подхода для новичков не всегда очевидна, поэтому далее небольшое отступление.

Мощность, передаваемая по силовым, а особенно высоковольтным кабелям очень велика. Средний по номинальному току высоковольтный выключатель имеет Iном. = 630 А. Если напряжение высоковольтной сети 6 кВ, то такой выключатель передаёт в нормальном режиме 630 * 6000 = 3 780 000 Вт = 3,78 МВт мощности. Это номинал, но отключится он при гораздо большем токе и не сразу. В случае пробоя эта мощность выделится на небольшом участке, металл и пластик быстро переходят в газообразное состояние — происходит серьёзный взрыв. Если рядом оказываются люди, то даже без поражения электрическим током возможны возгорания одежды и кожи открытых частей тела.

Зачастую такие аварии имеют цепную реакцию из-за того, что автоматика не всегда сразу отсекает повреждённый участок или токоведущие шины подстанций не выдерживают превышающий номинал ток – загореться может что-то ещё, и обесточится большой и важный участок энергохозяйства.

В электросетях любят показывать молодым обгоревшие остовы высоковольтных ячеек. Представьте себе стальной шкаф метр на метр на полтора сквозными дырками и весь покрытый сажей и окалиной.

Поэтому у электриков-высоковольтников ни одна кабельная линия не должна включаться в сеть без испытаний повышенным напряжением. Установки для испытаний подают в кабельную линию напряжение превышающее номинальное в несколько раз, тем самым испытывая её изоляцию. При этом они способны быстро отключиться в случае пробоя без тяжёлых последствий.

Установки для высоковольтных испытаний


Аппарат для высоковольтных
испытаний АИИ-70

Аппараты для высоковольтных испытаний можно условно разделить на переносные и используемые в составе передвижной лаборатории высоковольтных испытаний (далее ЛВИ).

Наиболее распространённые переносные приборы на следующих фотографиях: это старичок АИИ-70 и более новый АИД-70. (70 — максимальное напряжение в киловольтах). Плюс сейчас в эксплуатации всё чаще появляются приборы импортного происхождения.


АИД-70

То, что устанавливается в передвижные лаборатории высоковольтных испытаний (ЛВИ) более разнообразно и, как правило, выполнено в виде стоечного блока и отдельного трансформатора. Испытательный блок завязывается на общую для всей машины систему кабелей и заземления. Тем не менее, поверяются эти блоки отдельно от всей ЛВИ, и даже в протоколе указывается испытательный блок, а не весь комплекс.

Говоря о передвижных лабораториях стоит заметить, что собираются они блочно. То есть у вас желание иметь в составе дополнительный блок – ставьте, не хватает денег — не ставьте. Имея автомобиль с просторным салоном можно собрать высоковольтную лабораторию в хорошо оборудованном гараже. Привинтить трансформатор, закрепить катушки с испытательным кабелем, придумать безопасный переключатель, блокировку и заземление. То есть выполнить требования ПУЭ, а они в свою очередь не так уж и сложны, то есть под силу некоторым «Кулибиным».

Переменный, постоянный и сверхнизкий

Оборудование высоковольтных подстанций испытывается разными типами тока. Шины, секции, трансформаторы и тому подобные устройства испытываются повышенным напряжением переменного тока.

Испытать же кабели переменным напряжением не получится из-за большой электрической ёмкости кабельных жил. Для подобного испытания пришлось бы делать установку довольно большой мощности и именно поэтому кабели испытывают постоянным током. Соответственно с возможностью переключения «постоянный ток – переменный ток» производятся и испытательные установки. То есть в них либо предусмотрен переключатель, либо может быть подключен выпрямляющий блок. Электрическая схема выпрямителя для таких испытаний, как правило, состоит из одного высоковольтного диода.

В связи с распространением кабелей с изоляцией из сшитого полиэтилена (буквы «Пв» в маркировке) всё больше появляется испытательных установок способных выдавать напряжение со сверхнизкой частотой – 0,1 Гц. Такой аппарат меняет полярность выдаваемого напряжения с периодом в 10 секунд. Из-за такой медленной смены полярности электрическая ёмкость кабеля уже не создаёт больших токов при испытании повышенным напряжением. В то же время это уже не постоянный ток и поляризации в сшитом полиэтилене не происходит.

Стоит заметить, что в нормативных документах предусмотрено много исключений типа «если отсутствует установка переменного тока, то допускается испытание постоянным…» или «допускается испытание оборудование секций совместно с кабельными линиями по напряжению для …»

Силовые кабели напряжением выше 1 кВ испытываются повышенным напряжением выпрямленного тока. Величины испытательных напряжений и длительность приложения нормированного испытательного напряжения приведены в таблице 1.8.39 (ПУЭ п. 1.8.40)

Изоляция и марка кабеляИспытательное напряжение, кВ, для кабелей на рабочее напряжение, кВПродолжительность испытания, мин
23610
Бумажная1218366010
Резиновая марок
ГТШ, КШЭ, КШВГ, КШВГЛ, КШБГД
612205
Пластмассовая15366010

Токи утечки и коэффициенты асимметрии для силовых кабелей

При испытаниях отмечают характер изменения тока утечки. Кабель считается прошедшим испытания при отсутствии пробоя изоляции, скользящих разрядов и толчков (или нарастания) тока утечки после того, как испытательное напряжение достигнет нормативного значения. (Табл 1.8.40 ПУЭ п. 1.8.40) После испытания исправный кабель необходимо разрядить.

Кабели напряжением, кВИспытательное напряжение, кВДопустимые значения токов утечки, мАДопустимые значения коэффициента асимметрии (Imax/Imin)
6360,28
10600,58

Абсолютное значение тока утечки не является браковочным показателем. Кабельные линии с удовлетворительной изоляцией должны иметь стабильные значения токов утечки. При проведении испытания ток утечки должен уменьшаться. Если не происходит уменьшения значения тока утечки, а также при его увеличении или нестабильности тока испытание производить до выявления дефекта, но не более чем 15 мин.

Измерение распределения тока по одножильным кабелям проводится на линиях всех напряжений. Неравномерность распределения тока на кабеле не должна превышать 10 %.

Чем отличаются и где используются постоянный и переменный ток

В современном мире каждый человек с детства сталкивается с электричеством. Первые упоминания об этом природном явлении относятся к временам философов Аристотеля и Фалеса, которые были заинтригованы удивительными и загадочными свойствами электрического тока. Но лишь в 17 веке великие ученые умы начали череду открытий, касающихся электрической энергии, продолжающихся по сей день.

Открытие электрического тока и создание Майклом Фарадеем в 1831 г. первого в мире генератора кардинально изменило жизнь человека. Мы привыкли, что нашу жизнь облегчают приборы, работающие с использованием электрической энергии, но до сих пор у большинства людей нет понимания этого важного явления. Для начала, чтобы понять основные принципы электричества, необходимо изучить два основных определения: электрический ток и напряжение.

Что такое электрический ток и напряжение

Электрический ток – это упорядоченное движение заряженных частиц (носителей электрического заряда). Носителями электрического тока являются электроны (в металлах и газах), катионы и анионы (в электролитах), дырки при электронно-дырочной проводимости. Данное явление проявляется созданием магнитного поля, изменением химического состава или нагреванием проводников. Основными характеристиками тока являются:

  • сила тока, определяемая по закону Ома и измеряемая в Амперах (А), в формулах обозначается буквой I;
  • мощность, согласно закону Джоуля-Ленца, измеряемая в ваттах (Вт), обозначается буквой P;
  • частота, измеряемая в герцах (Гц).

Электрический ток, как носитель энергии используют для получения механической энергии с помощью электродвигателей, для получения тепловой энергии в отопительных приборах, электросварке и нагревателях, возбуждения электромагнитных волн различной частоты, создания магнитного поля в электромагнитах и для получения световой энергии в осветительных приборах и различного рода лампах.

Напряжение – это работа, совершаемая электрическим полем для перемещения заряда в 1 кулон (Кл) из одной точки проводника в другую. Исходя из данного определения, все-таки сложно осознать, что же такое напряжение.

Чтобы заряженные частицы перемещались от одного полюса к другому, необходимо создать между этими полюсами разность потенциалов (именно она и именуется напряжением). Единицей измерения напряжения является вольт (В).

Для окончательного понимания определения электрического тока и напряжения, можно привести интересную аналогию: представьте, что электрический заряд — это вода, тогда давление воды в столбе – это и есть напряжение, а скорость потока воды в трубе – это сила электрического тока. Чем выше напряжение, тем больше сила электрического тока.

Что такое переменный ток

Если менять полярность потенциалов, то направление протекания электрического тока меняется. Именно такой ток и называется переменным. Количество изменений направления за определенный промежуток времени называется частотой и измеряется, как уже было сказано выше, в герцах (Гц). Например, в стандартной электрической сети в нашей стране частота равна 50 Гц, то есть направление движения тока за секунду меняется 50 раз.

Что такое постоянный ток

Когда упорядоченное движение заряженных частиц имеет всегда только одно направление, то такой ток именуется постоянным. Постоянный ток возникает в сети постоянного напряжения, когда полярность зарядов с одной и другой стороны постоянна во времени. Его очень часто используют в различных электронных устройствах и технике, когда не требуется передача энергии на большое расстояние.

Источники электрического тока

Источником электрического тока обычно называется прибор или устройство, с помощью которого в цепи можно создать электрический ток. Такие устройства могут создавать как переменный ток, так и постоянный. По способу создания электрического тока они подразделяются на механические, световые, тепловые и химические.

Механические источники электрического тока преобразуют механическую энергию в электрическую. Таким оборудованием являются различного рода генераторы, которые за счет вращения электромагнита вокруг катушки асинхронных двигателей вырабатывают переменный электрический ток.

Световые источники преобразуют энергию фотонов (энергию света) в электрическую энергию. В них используется свойство полупроводников при воздействии на них светового потока выдавать напряжение. К такому оборудованию можно отнести солнечные батареи.

Тепловые – преобразуют энергию тепла в электричество за счет разности температур двух пар контактирующих полупроводников – термопар. Величина тока в таких устройствах напрямую связана с разностью температур: чем больше разница – тем больше сила тока. Такие источники применяются, например, в геотермальных электростанциях.

Химический источник тока производит электричество в результате химических реакций. Например, к таким устройствам можно отнести различного рода гальванические батареи и аккумуляторы. Источники тока на основе гальванических элементов обычно применяются в автономных устройствах, автомобилях, технике и являются источниками постоянного тока.

Преобразование переменного тока в постоянный

Электрические устройства в мире используют постоянный и переменный ток. Поэтому возникает потребность в том, чтобы преобразовывать один ток в другой или наоборот.

Читать еще:  Характеристика автоматические выключатели света

Из переменного тока можно получить постоянный ток с помощью диодного моста или, как его еще называют, «выпрямителя». Основной частью выпрямителя является полупроводниковый диод, который проводит электрический ток только в одном направлении. После этого диода ток не изменяет своего направления, но появляются пульсации, которые устраняют при помощи конденсаторов и других фильтров. Выпрямители бывают в механическом, электровакуумном или полупроводниковом исполнении.

В зависимости от качества изготовления такого устройства, пульсации тока на выходе будут иметь разное значение, как правило, чем дороже и качественнее сделан прибор – тем меньше пульсаций и чище ток. Примером таких устройств являются блоки питания различных приборов и зарядные устройства, выпрямители электросиловых установок в различных видах транспорта, сварочные аппараты постоянного тока и другие.

Для того, чтобы преобразовать постоянный ток в переменный используются инверторы. Такие приборы генерируют переменное напряжение с синусоидой. Существует несколько видов таких аппаратов: инверторы с электродвигателями, релейные и электронные. Все они отличаются друг от друга по качеству выдаваемого переменного тока, стоимости и размерам. В качестве примера такого устройства можно привести блоки бесперебойного питания, инверторы в автомобилях или, например, в солнечных электростанциях.

Где используется и в чём преимущества переменного и постоянного тока

Для выполнения различных задач может потребоваться использование как переменного тока, так и постоянного. У каждого вида тока есть свои недостатки и достоинства.

Переменный ток чаще всего используется тогда, когда присутствует необходимость передачи тока на большие расстояния. Такой ток передавать целесообразнее с точки зрения возможных потерь и стоимости оборудования. Именно поэтому в большинстве электроприборов и механизмов используется только этот вид тока.

Жилые дома и предприятия, инфраструктурные и транспортные объекты находятся на расстоянии от электростанций, поэтому все электрические сети — переменного тока. Такие сети питают все бытовые приборы, аппаратуру на производствах, локомотивы поездов. Приборов, работающих на переменном токе невероятное количество и намного проще описать те устройства, в которых используется постоянный ток.

Постоянный ток используется в автономных системах, таких, например, как бортовые системы автомобилей, летательных аппаратов, морских судов или электропоездов. Он широко используется в питании микросхем различной электроники, в средствах связи и прочей технике, где требуется минимизировать количество помех и пульсаций или исключить их полностью. В ряде случае, такой ток используется в электросварочных работах с помощью инверторов. Существуют даже железнодорожные локомотивы, которые работают от систем постоянного тока. В медицине такой ток используется для введения лекарств в организм с помощью электрофореза, а в научных целях для разделения различных веществ (электрофорез белков и прочее).

Обозначения на электроприборах и схемах

Часто возникает потребность в том, чтобы определить на каком токе работает устройство. Ведь подключение устройства, работающего на постоянном токе в электрическую сеть переменного тока, неминуемо приведет к неприятным последствиям: повреждению прибора, возгоранию, электрическому удару. Для этого в мире существуют общепринятые условные обозначения для таких систем и даже цветовая маркировка проводов.

Условно, на электроприборах, работающих на постоянном токе указывается одна черта, две сплошных черты или сплошная черта вместе с пунктирной, расположенные друг под другом. Также такой ток маркируется обозначением латинскими буквами DC. Электрическая изоляция проводов в системах постоянного тока для положительного провода окрашена в красный цвет, отрицательного в синий или черный цвет.

На электрических аппаратах и машинах переменный ток обозначается английской аббревиатурой AC или волнистой линией. На схемах и в описании устройств его также обозначают двумя линиями: сплошной и волнистой, расположенных друг под другом. Проводники в большинстве случаев обозначаются следующим образом: фаза – коричневым или черным цветом, ноль – синим, а заземление желто-зеленым.

Почему переменный ток используется чаще

Выше мы уже говорили о том, почему переменный ток в настоящее время используется чаще, чем постоянный. И все же, давайте рассмотрим этот вопрос подробнее.

Споры о том, какой же ток в использовании лучше идет со времен открытий в области электричества. Существует даже такое понятие, как «война токов» — противоборство Томаса Эдисона и Николы Теслы за использование одного из видов тока. Борьба между последователями этих великих ученых просуществовала вплоть до 2007 года, когда город Нью-Йорк перевели на переменный ток с постоянного.

Самая главная причина, по которой переменный ток используется чаще – это возможность передавать его на большие расстояния с минимальными потерями . Чем больше расстояние между источником тока и конечным потребителем, тем больше сопротивление проводов и тепловые потери на их нагрев.

Для того, чтобы получить максимальную мощность необходимо увеличивать либо толщину проводов (и уменьшать тем самым сопротивление), либо увеличивать напряжение.

В системах переменного тока можно увеличивать напряжение при минимальной толщине проводов тем самым сокращая стоимость электрических линий. Для систем с постоянным током доступных и эффективных способов увеличивать напряжение не существует и поэтому для таких сетей необходимо либо увеличивать толщину проводников, либо строить большое количество мелких электростанций. Оба этих способа являются дорогостоящими и существенно увеличивают стоимость электроэнергии в сравнении с сетями переменного тока.

При помощи электротрансформаторов напряжение переменного тока эффективно (с КПД до 99%) можно изменять в любую сторону от минимальных до максимальных значений, что тоже является одним из важных преимуществ сетей переменного тока. Применение трехфазной системы переменного тока еще больше увеличивает эффективность, а механизмы, например, двигатели, которые работают в электросетях переменного тока намного меньше, дешевле и проще в обслуживании, чем двигатели постоянного тока.

Исходя из всего вышесказанного можно сделать вывод о том, что использование переменного тока выгодно в больших сетях и при передаче электрической энергии на большие расстояния, а для точной и эффективной работы электронных приборов и для автономных устройств целесообразно использовать постоянный ток.

Что такое короткое замыкание по-простому?

Какие существуют виды источников электрического тока?

Способы вычисления потребления электроэнергии бытовыми приборами

Как пользоваться мультиметром – измерение напряжения, силы тока и сопротивления

Что такое фазное и линейное напряжение?

Сравнение основных параметров светодиодных ламп и ламп накаливания, таблица соответствия мощности и светового потока

E1 — ВВЕДЕНИЕ

Самые важные электрические характеристики кабелей больше 1 kV которые проявляются в ходе эксплуатации:

рабочая мощность и токи заряда

реактанс (индукционное сопротивление)

Электрическое сопротивление провода

Электрическое сопротивление провода при постоянном токе в прямой зависимости от: удельного сопротивления предметного материала, поперечного сечения провода, температуры и длины. Единичные измерения сечений кабелей и проводов которые используются на т-ре 20 o C утверждены стандартом JUS N.C0.015, который соответствует европейской норме HD 383, т.е. международному стандарту IEC 60228.
Расчет сопротивления провода при т-ре больше 20 o C, а также увеличения сопротивления вследствие скин- эффекта (поверхностного эффекта) и эффекта близости, исчисляется как и в разделе C1.1.
У кабелей с электрической защитой и/или арматурой, эффективное сопротивление провода увеличивается и вследствие потерь, которые происходят в этих элементах кабеля, а именно:

Rteff – представляет эффективное сопротивление кабеля в Ω/km
λ1 — представляет коэффициент увеличения сопротивления вследствие потерь в электрической защите
λ2 — представляет коэффициент увеличения сопротивления вследствие потерь в арматуре

Значения сопротивлений, высчитанные согласно вышеуказанным формулам, предоставлены в Таблице E2.1.

Индуктивность и индуктивное сопротивление

Индуктивность одножильных кабелей в прямой зависимости от их распределения-расположения (в треугольном пучке, в плоскости). Для установленных формирований (расположений кабеля) и существующих между ними интервалах , среднее значение индуктивности можно высчитать согласно нижеуказанной формуле. Эту формулу можно также использовать и для трехжильных кабелей.

. mH/km

расшифровка:
a — представляет среднее расстояние между осями провода в mm
a = D. представляет D-диаметр кабеля, расположенного в треугольнике, и диаметр жилы для трехжильного кабеля
a = s (2) 1/3 . s – представляет расстояние между осями двух соседних кабелей
ρ = 0,779 r эквивалентный радиус провода в mm
r — радиус провода в mm

Индуктивное сопротивление ( реактанс) высчитывается по формуле:

XL = 2π f L 10 -3 . . Ω/km

f — представляет промышленную частоту в Hz

Значения индуктивных сопротивлений представлены в Таблице E2.2.

Прямой импеданс кабеля высчитывается в комплексной форме согласно следующей формуле:

Т.е. в абсолютной величине:

Инверсивный импеданс у кабелей равняется прямому импедансу, т.е. Zd = Zi.

Мощность, зарядный ток и ток заземления

Каждый кабель может представлят собой кондензатор мощности который находится в прямой зависимости от его габаритов: диаметра провода оснащенного слабопроводимым слоем (если он предусмотрен), диаметра ниже экрана изоляции, длины кабеля, а у кабелей с нерадиальным полем- в зависимости от расстояния между осями провода и металлического слоя (общей электрозащиты или арматуры). Зависимость мощности от вида изоляционного материала определена диэлектрической константой изоляции εr, которая составляет:

для оплетенного полиэтилена: . 2,5

для ПВХ (PVC): . 5 — 8

Относительная диэлектрическая константа εr для оплетенного полиэтилена в диапазоне от 20 0C до максимальной рабочей т-ры считается константной, в то время как у ПВХ материалов существует существенная зависимость от температуры, что видно из значений представленных в Таблице E.2.3.

Расчет мощности кабелей с радиальным полем можно сделать при помощи следующей формулы:

расшифровка:
D — диаметр ниже экрана изоляции (слабопроводимого слоя) в mm
d — диаметр провода поверх слабопроводимого слоя в mm

Зарядный ток для этого вида кабеля в симетричной трехфазовой системе круговой частоты ω следующий:

Мощности трехжильных кабелей с нерадиальным полем которые оснащены общей электрической защитой или арматурой, получаются при помощи следующей формулы:

Также можно использовать, для более простого расчета и формулу Симонса:

Расшифровка:
r — радиус провода в mm
d — расстояние между осями провода в mm
R — радиус ниже электрической защиты т.е. арматуры
t1 — толщина изоляции в mm
t2 — толщина облицовки (защитного кожуха) поверх сердцевины кабеля.

Мощность C у этих кабелей составлена из отдельных мощностей: проводник/металлическая облицовка C и провод/провод C12, между которыми существует следующее соотношение:

В/у обозначения и d = расстояние между продолными осями кабеля и провода

Из-за различии материалов используемых для изоляции жил и для нанесения поверх сердцевины кабеля и вариаций в значениях для εr, настоящие значения могут быть с значительными отклонениями от расчетных.

Зарядный ток этих кабелей в симетрической трехфазовой системе понимается:

Мощностные объемы и зарядные токи предоставлены в Таблице E.2.3.

Ток замыкания на землю

В сетях имеющих изолированную звездочку, ток замыкания на землю представляет диэлектрический ток замыкания на землю, в то время как в сетях с компенсацией замыкания на землю оставшийся ток меньше диэлектрического тока замыкания на землю. Связь между мощностью кабеля и диэлектрическим током замыкания на землю выражена следующей формулой:
Для кабелей с радиальным полем

Для кабелей с нерадиальным полем

Токи замыкания на землю являются равносильными для определения значений общего заземления трансформаторной подстанции в рамках в/у сетей.
Значения токов замыкания на землю представлены в Таблице E2.3.

В сетях где заземление звездочки идет через небольшое сопротивление, ток доземного короткого замыкания первостепенно определяется нулевыми импедансами в сети.

Нулевой импеданс

Допустимые токи постоянной эксплуатации (под нагрузко100% ) расчитаны по международному стандарту IEC 287, на условиях которые определены в Таблице E2.4, с примечанием что эти значения расчетные, поскольку нулевой импеданс кабеля в сети не обусловлен только самым кабелем но и множеством других проводок в земле, включая и другие паралельно проложенные кабели.

Читать еще:  Телевизионный кабель напряжение переменного тока

Нулевой импеданс состоит из реальной и нереальной компонентов, т.е. в комплексном виде он представлен как:

Редукционные факторы

В случае замыкания на землю , общий ток проводимый кабелем разделяется в месте повреждения на две части: на ток проходимый через электрическую защиту и ток отводящийся через землю. Редукционный фактор представляет собой соотношение тока который возвращается через землю и общего тока замыкания на землю.

В Таблице E2. 5 представлены значения редукционных факторов кабелей изолированных оплетенным полиэтиленом, для выдерживания напряжений 12/20 kV и 20/35 kV.

E.1.2 Допустимя токовая нагрузка

Допустимая токовая нагрузка и корректировочные факторы

Допустимые токи постоянной эксплуатации (под нагрузко100% ) расчитаны по международному стандарту IEC 287, на условиях которые определены в Таблице E1.1.
При расчете использованы следующие значения :

предельно высокая длительная рабочая т-ра для оплетенного полиэтилена 90 0 C

предельно высокая длительная рабочая т-ра для ПВХ (PVC) 70 0 C

угол потерь tgδ для оплетенного полиэтилена 0,0005

угол потерь tgδ для ПВХ (PVC) 0,1

удельное термическое сопротивление оплетенного полиэтилена 3,5K*m/ W

удельное термическое сопротивление ПВХ ( PVC) изоляции и оболочки 6 K*m/ W

удельное термическое сопротивление термопластичного полиэтилена 3,5K*m/ W

удельное термическое сопротивление земли (грунта) 1 K*m/ W

глубина укладки кабеля 0,7m

т-ра грунта на глубине укладки кабеля 20 0 C

т-ра воздуха 30 0 C

кабель (т.е. токовая цепь) отдельной прокладки

электрическая защита (если имеется) с заземлением в двух концах

кабели для прокладки по воздуху с защитой от прямого попадания солнечных лучей

Токовая нагрузка для кабелей уложенных в землю действует и в случаях когда часть глубокой канавы (траншеи) заполнена песком или другим видом подстилающего слоя который хорошо отводит тепло , в случаях когда кабель накрыт кирпичом и если вдоль трассы кабель проложен в нескольких трубах длиной не более 6 m.
Значения токовой нагрузки для кабелей проложенных по воздуху действуют при условии если обеспечена свободная циркуляция воздуха, т.е. нет препятствий отдаче тепла путем конвекции и излучения и, что температура окружающей среды резко не поднимается вследствие потерь в кабелях и, что нет побочных источников тепла. Перечисленные условия будут выполнены если:

расстояние кабеля от стены, почвы или покрытия ≥2 cm

расстояние между кабелями ≥ 2* -диаметр кабеля,

вертикальное расстояние между слоями кабеля ≥ 20 cm.

Если имеются отклонения от заданных условий применяются корректировочные факторы, определенные в разделе F. Разделом охвачены следующие факторы:

Факторы типа F касающиеся отклонений от условий окружающей среды :

— Для кабелей с укладкой в грунт
f1— отклонения в температуре . Таблица F1
f2— отклонения в термическом сопротивлении грунта. Таблица F2.1
f3— отклонения от расчетной глубины укладки. Таблица F2.1
f4— наличие покровного слоя над кабелем. Таблица F2.1
f5 кабели в трубах или в несущих элементах бетонной конструкции . Таблица F2.3

— Для кабелей прокладываемых по воздуху
f6— отклонения в температуре. . Таблица F1

Факторы типа G для группировки кабелей:

— Для кабелей с укладкой в грунт
g1— группировка многожильных кабелей. Таблица F2.2
g2— группировка одножильных кабелей. Таблица F2.2

— Для воздушных кабелей
g1— группировка многожильных кабелей с интервалами.. Таблица F3.1
g1— группировка многожильных кабелей с точкой соприкосновения. Таблица F3.2
g2— группировка одножильных кабелей в треугольном формировании. Таблица F3.3
g2— группировка одножильных кабелей в одной плоскости. Таблица F3.4

5.5. Электрический поверхностный эффект в плоской шине. Эффект близости

Падение напряжения на проводе

Статья будет конкретная, с теоретическими выкладками и формулами. Кому не интересно, что откуда и почему, советую перейти сразу к Таблице 2 – Выбор сечения провода в зависимости от тока и падения напряжения.

И ещё – расчет потерь напряжения на длинной мощной трехфазной кабельной линии. Пример расчета реальной линии.

Итак, если взять неизменной мощность, то при понижении напряжения ток должен возрастать, согласно формуле:

P = I U. (1)

При этом падение напряжения на проводе (потери в проводах) за счет сопротивления рассчитывается, исходя из закона Ома:

U = R I. (2)

Из этих двух формул видно, что при понижении питающего напряжения потери на проводе возрастают. Поэтому чем ниже питающее напряжение, тем большее сечение провода нужно использовать, чтобы передать ту же мощность.

Для постоянного тока, где используется низкое напряжение, приходится тщательно подходить к вопросу сечения и длины, поскольку именно от этих двух параметров зависит, сколько вольт пропадёт зря.

График распределения тока.

На графике наглядно показано распределение плотности тока J в проводнике круглого сечения (цилиндрический). За пределами глубины проникновения плотность тока равна нулю или же ничтожно мала, потому как в этих местах проводника отсутствуют свободные электроны. Ток в этих местах отсутствует.

Если из центра такого проводника где отсутствует ток, извлечь проводящий материал, то мы получим полый проводник в виде трубки (трубчатый). Проводящие характеристики от этого не изменятся, потому как тока там и не было, сопротивление такого проводника не изменится, но могут поменяться такие характеристики как индуктивность и емкость проводника.

Сопротивление проводника в цепи переменного тока зависит не только от материала проводника, но также от частоты тока. При высоких частотах, за счет скин-эффекта, весь ток начинает протекать практически по границе проводника, там где он контактирует со внешней, не проводящей средой.

Сопротивление медного провода постоянному току

Сопротивление провода зависит от удельного сопротивления ρ, которое измеряется в Ом·мм²/м. Величина удельного сопротивления определяет сопротивление отрезка провода длиной 1 м и сечением 1 мм².

Сопротивление того же куска медного провода длиной 1 м рассчитывается по формуле:

R = (ρ l) / S, где (3)

R – сопротивление провода, Ом,

ρ – удельное сопротивление провода, Ом·мм²/м,

l – длина провода, м,

S – площадь поперечного сечения, мм².

Сопротивление медного провода равно 0,0175 Ом·мм²/м, это значение будем дальше использовать при расчетах.

Не факт, что производители медного кабеля используют чистую медь “0,0175 пробы”, поэтому на практике всегда сечение берется с запасом, а от перегрузки провода используют защитные автоматы, тоже с запасом.

Из формулы (3) следует, что для отрезка медного провода сечением 1 мм² и длиной 1 м сопротивление будет 0,0175 Ом. Для длины 1 км – 17,5 Ом. Но это только теория, на практике всё хуже.

Ниже приведу табличку, рассчитанную по формуле (3), в которой приводится сопротивление медного провода для разных площадей сечения.

Таблица 0. Сопротивление медного провода в зависимости от площади сечения

S, мм²0,50,7511,52,54610
R для 1м0,0350,0233330,01750,0116670,0070,0043750,0029170,00175
R для 100м3,52,3333331,751,1666670,70,43750,2916670,175

Падение напряжения на печатных проводниках

Расчет электрических параметров ПП

Задачи конструирования печатных плат

При разработке конструкции печатных плат решаются следующие задачи:

1) схемотехнические — трассировка печатных проводников, минимизация количества слоев и т.д.;

2) радиотехнические — расчет паразитных наводок, параметров линий связи и т.д.;

3) теплотехнические — температурный режим работы печатной платы, теплоотвод и т.д.;

4) конструктивные — размещение элементов на печатной плате, контактирование и т.д.;

5) технологические — выбор меда изготовления, защита и т.д.

Все эти задачи взаимосвязаны между собой. Например, от метода изготовления зависят точность размеров проводников и их электрические характеристики, а от расположения печатных проводников — степень влияния их друг на друга и т.д.

Печатные проводники проходят на достаточно близком расстоянии друг от друга и имеют относительно малые линейные размеры сечения. С увеличением быстродействия ЭВМ все большее значение приобретают вопросы учета параметров проводников и высокочастотных связей между ними.

Рассмотрим определение основных характеристик печатных проводников.

Сопротивление проводника. Сопротивление проводника определяется выражением

— удельное объемное электрическое сопротивление проводника;
l
— длина проводника;
b
— ширина проводника;
t
— толщина проводника. Величина
ρ
различается для проводников, изготовленных различными методами. Так, для медных проводников, полученных электрохимическим осаждением, ρ равно 0,02-0,03 мкОм/м, а для медных проводников, полученных методом химического травления ρ равно примерно 0,0175 мкОм/м.

Постоянный ток в проводниках. Величина тока в печатных проводниках определяется, в первую очередь, ограничением на максимально допустимую плотность тока для конкретного материала γ. Для медных проводников, полученных электрохимическим осаждением γ равна около 20 А/мм2, и около 30 А/мм2 для проводников, полученных методом химического травления фольги.

Допустимый ток в печатных проводниках определяется как

а ширина должна отвечать следующему условию:

Падение напряжения на печатных проводниках определяется как:

В отличие от постоянного тока распределение переменного тока в печатных проводниках происходит неравномерно. Это обусловлено наличием поверхностного эффекта, возникающего при протекании по проводнику высокочастотного переменного тока. При этом внутри проводника образуется магнитное поле, приводящее к возникновению индукционного тока, взаимодействующего с основным. Вследствие этого происходит перераспределение тока по сечению проводника, и в результате его плотность в периферийных областях сечения возрастает, а ближе к центру уменьшается. На высоких частотах ток во внутренних слоях проводника уменьшается практически до нуля.

Расчет падения напряжения на проводе для постоянного тока

Теперь по формуле (2) рассчитаем падение напряжения на проводе:

U = ((ρ l) / S) I , (4)

То есть, это то напряжение, которое упадёт на проводе заданного сечения и длины при определённом токе.

Вот такие табличные данные будут для длины 1 м и тока 1А:

Таблица 1. Падение напряжения на медном проводе 1 м разного сечения и токе 1А:

S, мм²0,50,7511,52,546810
U, B0,03500,02330,01750,01170,00700,00440,00290,00220,0018

Эта таблица не очень информативна, удобнее знать падение напряжения для разных токов и сечений. Напоминаю, что расчеты по выбору сечения провода для постоянного тока проводятся по формуле (4).

Таблица 2. Падение напряжения при разном сечении провода (верхняя строка) и токе (левый столбец). Длина = 1 метр

S,мм²
I,A
11,52,546101625
10,01750,01170,00700,00440,00290,00180,00110,0007
20,03500,02330,01400,00880,00580,00350,00220,0014
30,05250,03500,02100,01310,00880,00530,00330,0021
40,07000,04670,02800,01750,01170,00700,00440,0028
50,08750,05830,03500,02190,01460,00880,00550,0035
60,10500,07000,04200,02630,01750,01050,00660,0042
70,12250,08170,04900,03060,02040,01230,00770,0049
80,14000,09330,05600,03500,02330,01400,00880,0056
90,15750,10500,06300,03940,02630,01580,00980,0063
100,17500,11670,07000,04380,02920,01750,01090,0070
150,26250,17500,10500,06560,04380,02630,01640,0105
200,35000,23330,14000,08750,05830,03500,02190,0140
250,43750,29170,17500,10940,07290,04380,02730,0175
300,52500,35000,21000,13130,08750,05250,03280,0210
350,61250,40830,24500,15310,10210,06130,03830,0245
500,87500,58330,35000,21880,14580,08750,05470,0350
1001,75001,16670,70000,43750,29170,17500,10940,0700

Какие пояснения можно сделать для этой таблицы?

1. Красным цветом я отметил те случаи, когда провод будет перегреваться, то есть ток будет выше максимально допустимого для данного сечения. Пользовался таблицей, приведенной у меня на СамЭлектрике: Выбор площади сечения провода.

2. Синий цвет – когда применение слишком толстого провода экономически и технически нецелесообразно и дорого. За порог взял падение менее 1 В на длине 100 м.

Как пользоваться таблицей выбора сечения?

Пользоваться таблицей 2 очень просто. Например, нужно запитать некое устройство током 10А и постоянным напряжением 12В. Длина линии – 5 м. На выходе блока питания можем установить напряжение 12,5 В, следовательно, максимальное падение – 0,5В.

Читать еще:  Ток нагрузки кабель nym

В наличии – провод сечением 1,5 квадрата. Что видим из таблицы? На 5 метрах при токе 10 А потеряем 0,1167 В х 5м = 0,58 В. Вроде бы подходит, учитывая, что большинство потребителей терпит отклонение +-10%.

Но. ПрОвода ведь у нас фактически два, плюс и минус, эти два провода образуют кабель, на котором и падает напряжение питания нагрузки. И так как общая длина – 10 метров, то падение будет на самом деле 0,58+0,58=1,16 В.

Иначе говоря, при таком раскладе на выходе БП 12,5 Вольт, а на входе устройства – 11,34. Этот пример актуален для питания светодиодной ленты.

И это – не учитывая переходное сопротивление контактов и неидеальность провода (“проба” меди не та, примеси, и т.п.)

Поэтому такой кусок кабеля скорее всего не подойдет, нужен провод сечением 2,5 квадрата. Он даст падение 0,7 В на линии 10 м, что приемлемо.

А если другого провода нет? Есть два пути, чтобы снизить потерю напряжения в проводах.

1. Надо размещать источник питания 12,5 В как можно ближе к нагрузке. Если брать пример выше, 5 метров нас устроит. Так всегда и делают, чтобы сэкономить на проводе.

2. Повышать выходное напряжение источника питания. Это черевато тем, что с уменьшением тока нагрузки напряжение на нагрузке может подняться до недопустимых пределов.

Например, в частном секторе на выходе трансформатора (подстанции) устанавливают 250-260 Вольт, в домах около подстанции лампочки горят как свечи. В смысле, недолго. А жители на окраине района жалуются, что напряжение нестабильное, и опускается до 150-160 Вольт. Потеря 100 Вольт! Умножив на ток, можно вычислить мощность, которая отапливает улицу, и кто за это платит? Мы, графа в квитанции “потери”.

Объяснение поверхностного эффекта

Следует подчеркнуть одинаковую плотность тока при подключении проводника к источнику питания с постоянным напряжением. Однако ситуация изменяется при прохождении волнового сигнала.


Распределение плотности тока в проводнике

Физическая картина возникновения

Для объяснения причин явления можно использовать вторую часть пояснительной картинки выше. В графической форме показаны силовые воздействия, которые образуются переменным полем. Электрическая составляющая (Е) направлена противоположно току (I), что объясняет возникающее сопротивление и соответствующее уменьшение амплитуды. По мере приближения к поверхности будет проявляться обратный эффект. Он вызван совпадением векторов напряженностей.

Уравнение, описывающее скин-эффект

Для выражения амплитуды через плотность тока берут определяющие соотношения из классических уравнений закона Ома и формул Максвелла. Дифференциалом по заданному временному интервалу можно вычислить значения магнитной и электрической компонент поля. В упрощенном виде рассматривают бесконечный проводящий образец, созданный из однородного материала.

Чем объясняется такое значительное различие в допустимых величинах протекающего тока по кабелю одного и того же сечения при открытой и закрытой типах проводки?

Виталий
Добрый день! Чем объясняется такое значительное различие в допустимых величинах протекающего тока по кабелю одного и того же сечения при открытой и закрытой типах проводки?

Ответ:

Провода или кабели, проложенные открыто (открытая электропроводка), охлаждаются лучше, чем провода и кабели (скрытая электропроводка) проложенные в трубах или скрытые под штукатуркой, подвесным потолком и за подшивными стенами. Провода с резиновой изоляцией допускают длительную температуру нагрева их жил, не превышающую 65 «С, а провода с пластмассовой изоляцией — 70 «С. Сечение токопроводящих жил выбирают исходя из предельно допустимого нагрева жил, при котором не повреждается изоляция проводов.

После выполнения электромонтажных работ, Вам требуется провести комплекс электроизмерений, а именно:

Если Вы не можете самостоятельно выполнить электроизмерения, то воспользуйтесь услугами специалистов передвижной электролаборатории.

Электрический ток в металлах – это упорядоченное движение электронов под действием электрического поля. Наиболее убедительное доказательство электронной природы тока в металлах было получено в опытах с инерцией электронов (опыт Толмена и Стьюарта):


Катушка с большим числом витков тонкой проволоки (рис. 9.1) приводилась в быстрое вращение вокруг своей оси. Концы катушки с помощью гибких проводов были присоединены к чувствительному баллистическому гальванометру. Раскрученная катушка резко тормозилась, и в цепи возникал кратковременных ток, обусловленный инерцией носителей заряда. Полный заряд, протекающий по цепи, измерялся гальванометром. При торможении вращающейся катушки на каждый носитель заряда e массой m действует тормозящая сила, которая играет роль сторонней силы, то есть силы неэлектрического происхождения:

Сторонняя сила, отнесенная к единице заряда, по определению является напряженностью поля сторонних сил:

Следовательно, в цепи при торможении катушки возникает электродвижущая сила:

За время торможения катушки по цепи протечет заряд q, равный:

где – длина проволоки катушки, I – мгновенное значение силы тока в катушке, R – полное сопротивление цепи, – начальная линейная скорость проволоки. Хорошая электропроводность металлов объясняется высокой концентрацией свободных электронов, равной по порядку величины числу атомов в единице объема. Предположение о том, что за электрический ток в металлах ответственны электроны, возникло значительно раньше опытов Толмена и Стюарта. Еще в 1900 году немецкий ученый П. Друде на основе гипотезы о существовании свободных электронов в металлах создал электронную теорию проводимости металлов. Эта теория получила развитие в работах голландского физика Х. Лоренца и носит название классической электронной теории. Согласно этой теории, электроны в металлах ведут себя как электронный газ, во многом похожий на идеальный газ. Электронный газ заполняет пространство между ионами, образующими кристаллическую решетку металла. Из-за взаимодействия с ионами электроны могут покинуть металл, лишь преодолев так называемый потенциальный барьер. Высота этого барьера называется работой выхода.
При обычных (комнатных) температурах у электронов не хватает энергии для преодоления потенциального барьера. Согласно теории Друде–Лоренца, электроны обладают такой же средней энергией теплового движения, как и молекулы одноатомного идеального газа. Это позволяет оценить среднюю скорость теплового движения электронов по формулам молекулярно-кинетической теории:


При наложении внешнего электрического поля в металлическом проводнике кроме теплового движения электронов возникает их упорядоченное движение (дрейф), то есть электрический ток. Величина дрейфовой скорости электронов лежит в пределах 0,6 – 6 мм/c. Таким образом, средняя скорость упорядоченного движения электронов в металлических проводниках на много порядков меньше средней скорости их теплового движения. Малая скорость дрейфа не противоречит опытному факту, что ток во всей цепи постоянного тока устанавливается практически мгновенно. Замыкание цепи вызывает распространение электрического поля со скоростью c = 3·10 8 м/с . Через время (l – длина цепи) вдоль цепи устанавливается стационарное распределение электрического поля и в ней начинается упорядоченное движение электронов.
В классической электронной теории металлов предполагается, что движение электронов подчиняется законам механики Ньютона. В этой теории пренебрегают взаимодействием электронов между собой, а их взаимодействие с положительными ионами сводят только к соударениям. Предполагается также, что при каждом соударении электрон передает решетке всю накопленную в электрическом поле энергию и поэтому после соударения он начинает движение с нулевой дрейфовой скоростью. Несмотря на то, что все эти допущения являются весьма приближенными, классическая электронная теория качественно объясняет законы электрического тока в металлических проводниках: закон Ома, закон Джоуля – Ленца и объясняет существование электрического сопротивления металлов.
Закон Ома:

Электрическое сопротивление проводника:

Однако в ряде вопросов классическая электронная теория приводит к выводам, находящимся в противоречии с опытом. Эта теория не может, например, объяснить, почему молярная теплоемкость металлов, также как и молярная теплоемкость диэлектрических кристаллов, равна 3R (закон Дюлонга и Пти). Классическая электронная теория не может также объяснить температурную зависимость удельного сопротивления металлов: теория дает в то время как из эксперимента получается зависимость ρ

T. Наиболее ярким примером расхождения теории и опытов является сверхпроводимость. Качественное различие между металлами и полупроводниками (диэлектриками) состоит в характере зависимости удельной проводимости от температуры. У металлов с ростом температуры проводимость падает, а у полупроводников и диэлектриков растет. При Т о К у чистых металлов проводимость s о ¥ . У полупроводников и диэлектриков при Т о К, s о 0 . Качественного различия между полупроводниками и диэлектриками в отношении электропроводности, нет. Проявление у одних веществ металлических свойств, а у других полупроводниковых и диэлектрических может быть последовательно объяснено только в рамках квантовой теории.
Согласно квантовым представлениям, энергия электронов в атоме может изменяться дискретным образом. Причем, согласно принципу Паули, в одном квантовом состоянии может находиться не более одного электрона. В результате электроны не собираются на каком-то одном энергетическом уровне, а последовательно заполняют разрешенные энергетические уровни в атоме, формируя его электронные оболочки. При сближении большого числа атомов и образовании кристаллической структуры химические связи между атомами образуются за счет электронов, находящихся во внешних, валентных, электронных оболочках.
Согласно принципу Паули, атомы не могут сбиться в плотную массу, поскольку в этом случае в одном квантовом состоянии оказалось бы много частиц с полуцелым спином — собственным моментом количества движения (L = ħ/2). Такие частицы называются фермионами, и к ним, в частности, относятся электроны, протоны, нейтроны. Названы они так в честь итальянского физика Э. Ферми, впервые описавшего особенности поведения коллективов таких частиц. При сближении большого числа атомов в пределах твердого тела происходит расщепление исходного энергетического уровня валентного электрона в атоме на N подуровней, где N — число атомов, образующих кристалл. В результате образуется зона разрешенных энергетических уровней для электронов в твердом теле (рис.9.2).

Рис.9.2
В металлах внешние валентные оболочки заполнены не полностью, например, у атомов серебра во внешней оболочке 5s1 находится один электрон, в то время как, согласно принципу Паули, могло бы находиться два электрона с различными ориентациями спинов, но второго электрона во внешней оболочке атома серебра просто нет. При сближении N атомов Ag и расщеплении внешнего энергетического уровня 5s 1 1 на N подуровней каждый из них заполняется уже двумя электронами с различными ориентациями спинов. В результате при сближении N атомов серебра возникает энергетическая зона, наполовину заполненная электронами. Энергия, соответствующая последнему заполненному электронному уровню при 0 К, называется энергией Ферми eF≈kTg. Расстояние между соседними энергетическими уровнями DЕ очень мало, поскольку N очень велико, до .
eF

Расстояние между соседними разрешенными уровнями электронов в металлах много меньше энергии теплового движения электронов даже при самых низких температурах. Если поместить проводник в электрическое поле, включив его, например, в замкнутую цепь с источником ЭДС, то электроны начнут перемещаться из точки проводника с меньшим потенциалом к точке с большим потенциалом, так как их заряд отрицателен. Но движение в электрическом поле означает увеличение энергии электрона, а по квантовым представлениям, переход на более высокий энергетический уровень у электрона возможен, если этот соседний уровень свободен. В металлах таких свободных уровней для электронов, находящихся вблизи уровня Ферми, вполне достаточно, поэтому металлы являются хорошими проводниками электрического тока.
Однако эту проводимость обеспечивают не все свободные электроны металла, а лишь те из них, что расположены вблизи уровня Ферми. Концентрация таких электронов примерно равна nT /Tg, где Tg = 5×10 4 К – температура вырождения.

Прочая и полезная информация

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector